
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 863–867
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Talla at SemEval-2018 Task 7: Hybrid Loss Optimization for Relation
Classification using Convolutional Neural Networks

Bhanu Pratap, Daniel Shank, Oladipo Ositelu, Byron V. Galbraith
Talla Inc.

Boston, MA, USA
{bhanu, daniel, ladi, byron}@talla.com

Abstract

This paper describes our approach to
SemEval-2018 Task 7 – given an entity-
tagged text from the ACL Anthology corpus,
identify and classify pairs of entities that have
one of six possible semantic relationships.
Our model consists of a convolutional neural
network leveraging pre-trained word embed-
dings, unlabeled ACL-abstracts, and multiple
window sizes to automatically learn useful
features from entity-tagged sentences. We
also experiment with a hybrid loss function, a
combination of cross-entropy loss and ranking
loss, to boost the separation in classification
scores. Lastly, we include WordNet-based
features to further improve the performance
of our model. Our best model achieves an
F1(macro) score of 74.2 and 84.8 on subtasks
1.1 and 1.2, respectively.

1 Introduction

Classifying the relationship between entities is an
important natural language processing (NLP) task
that serves as a building block for a variety of
NLP applications such as knowledge base con-
struction and question-answering tasks. SemEval-
2018 Task 7 (Gábor et al., 2018) provided entity-
tagged texts from the ACL Anthology corpus and
asked participants to identify and classify entity
pairs into one of six semantic relationships.

Our approach to this problem consisted of se-
lecting two architectures shown to be successful
(Zeng et al., 2014; Nguyen and Grishman, 2015)
in this problem domain and adapting them to this
particular task. We found that pre-trained word
embeddings were effective for this problem, as
well as a combined loss function, and using Word-
Net features at a later stage of our model.

Figure 1: An example of sentence-level relation In-
stance. Sentences marked with entity positions were
the input to our model.

2 System Description

Convolutional neural networks (CNNs) have been
proven to significantly outperform other methods
for Relation Classification (Zeng et al., 2014; dos
Santos et al., 2015; Nguyen and Grishman, 2015).
Our approach was inspired by Nguyen and Grish-
man (2015) and dos Santos et al. (2015), both sys-
tems being minimally dependent on explicit fea-
ture engineering. While Nguyen and Grishman
(2015) relied solely on their model architecture to
automatically extract useful features, we also in-
cluded additional features based on part-of-speech
tags and WordNet hypernyms. Following dos San-
tos et al. (2015), we trained our model on a hybrid
objective function, a combination of cross entropy
loss and ranking loss. Finally, we also trained our
model in two stages to utilize large amounts of un-
labeled ACL corpus abstracts (Bird et al., 2008).
We describe these stages in detail in section 4.1.

Each abstract is first tokenized into sentences.
For each sentence, we then formed training exam-
ples by taking all combinations of pairs of enti-
ties annotated in the sentence. If a pair is anno-
tated with a relation label, we labeled the sentence
as this relation. Otherwise, we labeled the sen-
tence as an artificial class called OTHER . Figure
1 shows an example of a training instance in our
sentence-level dataset.

For an input sentence, each word was mapped
to a word-vector to form a sentence matrix. These
sentence matrices were provided as inputs to the

863



CNN. The output of this layer was then fed into a
softmax layer to classify the relationship between
two entities. Section 3 provides a detailed descrip-
tion of the underlying CNN.

3 Convolutional Neural Network for
Relation Classification

Our model consists of a preprocessing feature gen-
eration step followed by a 2D convolutional layer
with max pooling and then a fully connected layer
with softmax output.

3.1 Preprocessing and Feature Generation

The input to our model was a raw sentence marked
with entity positions. This raw sentence was first
converted into a real-valued sentence matrix by to-
kenizing the sentence and then replacing each to-
ken with a corresponding word embedding. We
used three different look-up tables: publicly avail-
able pre-trained word embeddings, randomly ini-
tialized word positions, and randomly initialized
part-of-speech tags. Following Collobert et al.
(2011), the final word embedding for each token
in the sentence was a concatenation of these three
embeddings.

For pre-trained word embeddings, we evaluated
word2vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), and Numberbatch (Speer and
Chin, 2016), ultimately choosing word2vec as the
best performer for this task.

The specific process used to generate the fea-
ture vector for a given token in a sentence is as
follows. Let n be the number of tokens in a sen-
tence x = [x1, x2, ..., xn] with xi1 and xi2 being
the two head words of the two entities in relation-
ship r. Relative positions between a token xi and
two entities are given by (i − i1) and (i − i2).
These positions are also mapped into real-valued
vectors using a position embeddings look-up table
Wp. Also, We, andWt embeddings look-up tables
are used to map each word and its part-of-speech
tag into a real valued vector. Finally, xi is trans-
formed into a vector vi = [ei;ui1 ;ui2 ; ti]

T , where
vi is the concatenation of vectors ei, ui1 , ui2 , ti,
ei is the word-vector mapped using the We look-
up table, ui1 and ui2 are the word-position vec-
tors mapped using the Wp look-up table, and ti is
the word-part-of-speech vector mapped using the
Wt look-up table. Dimension d of the final in-
put vector is given by d = (de + 2 ∗ dp + dt),
where de, dp and dt are the dimensions of pre-

trained word-embeddings, word-position embed-
dings and word-part-of-speech tag embeddings.
As a result of these look-up operations, the raw
sentence x = [x1, x2, ..., xn] is transformed into
a real-valued sentence matrix x = [x1,x2, ...,xn]
of size d× n.

3.2 2D Convolution with Max Pooling

We used multiple window sizes to extract features
corresponding to various n-grams. Letw be a win-
dow size and nw be the number of unique win-
dow sizes, a filter f = [f1, f2, .., fw] is a weight
matrix where fi is a column vector of size d =
(de + 2 ∗ dp + dt). A convolutional operation is
then performed using x and f to produce a feature
map s = [s1, s2, ..., sn−w+1] as:

si = g(
w−1∑

j=0

fTj+1x
T
j+i + b)

where b and g are bias and ReLU (Nair and Hin-
ton, 2010) activation function respectively. This
convolutional operation was repeated for different
filters and window sizes, and then a max pooling
strategy Zhang and Wallace (2017) was applied to
extract only 1 feature (the one with highest acti-
vation) from each feature map. That is, for each
feature map s, a max function was applied to pro-
duce a single value: pf = max(s).

3.3 Classification Layer

We took all the individually selected features from
the max pooling operation and concatenated them
together, producing z = [p1, p2, ..., pm], where m
is the number of feature maps and pi is the pooled
value for ith feature map. A random proportion
of input vector z was set to zero for regulariza-
tion purposes to produce a drop-out version zd of
input vector z. The vector zd was then fed into
a dense layer followed by a softmax operation to
produce the final classification probability for a re-
lation class r as:

o = Czd + b

p(r|θ) = eoi
∑L

k=1 e
ok

where o is the output of the dense layer, b is a
bias term, L is the number of relation categories,
and C is a weight matrix of size (nwm× L) with
nw being the number of unique window sizes and
m being the number of filters.

864



3.4 Additional Features
In addition to the output of the CNN layer, we ex-
plored a variety of additional features derived from
the input sentences.

Part-of-speech features, pos We randomly ini-
tialized embeddings for each part-of-speech tag
and used these embeddings as additional input to
our network. Part-of-speech tags for raw sentences
were generated using spaCy1.

WordNet hypernym features, hyp We incorpo-
rated WordNet hypernyms using the implementa-
tion2 provided by Ciaramita and Altun (2006).

Semantic Similarity between two entities, sim
We computed the cosine similarity between the
word-embeddings of the head-words of the two
entities in a relation instance.

REVERSE flag feature, rev We applied an in-
dicator function on the REVERSE flag of the rela-
tionship instance.

We fed hyp, sim and rev features as additional
inputs to the classification layer. While pos fea-
tures were provided as input to the convolution
layer.

4 Training Methods

We evaluated three different loss functions for
training our model: cross-entropy loss, ranking
loss (dos Santos et al., 2015), and a weighted com-
bination of the two, where

Lcombined = αLranking + (1− α)Lcross entropy

with α as a weighting parameter. The combined
loss function was determined to be the most effec-
tive.

4.1 Two-Staged Training
To make use of unlabeled data for fine-tuning
word-position and word-part-of-speech embed-
dings, we trained our model in two-stages follow-
ing Severyn and Moschitti (2015): a distant train-
ing stage and a supervised training stage.

Distant Training We first created a distantly
supervised training dataset using unlabeled ACL
corpus abstracts (Bird et al., 2008) based on the
naive assumption that two entities have the same
relationship across all aligned sentences. By

1spacy.io
2sourceforge.net/projects/supersensetag/

aligned sentences, we mean all sentences which
have exactly two entities. In order to create dis-
tantly supervised training data based on the above
assumption, we performed the following opera-
tions:

i) All the sentences in the ACL-corpus were in-
dexed in an IR system. Here we used Whoosh3.

ii) For each relation instance in the labeled train-
ing data, the top 40 sentences which contained
both the entity texts in the relation were returned
from the IR system.

iii) Result sentences in which the distance
(number of characters) between the two entity
texts was greater than 170 were removed. This
number was derived from distance statistics from
given labeled datasets.

iv) The remaining sentences were labeled with
the same relationship as the relation instance in
(ii).

Following above steps, we created distant-
datasets of around 1600 and 11000 training in-
stances for subtasks 1.1 and 1.2, respectively. We
also verified that there is no overlap between these
generated distant-datasets and the provided test
datasets.

Once the distantly supervised training data is
created, we train our model using these datasets
to fine-tune only word-position and part-of-speech
tag embeddings, while keeping word-embeddings
fixed.

Supervised Training In the second stage, we
initialized our model with the fine-tuned embed-
dings trained in the distantly supervised training
stage and then train our model using the pro-
vided labeled training data. In this stage we also
train word-embeddings but freeze them for first 10
epochs to prevent any large updates.

5 Experiments and Results

The class labels for subtasks 1.1 and 1.2 are highly
imbalanced (Table 1). To compensate for this im-
balance, we trained our models for subtasks 1.1
and 1.2 jointly on a combined dataset and used
class-weights to weight our loss function.

5.1 Resources and Hyperparameters
We chose all the hyperparameters based on the
model performance on our validation set. All
experiments below use the hyperparameters as
shown in Table 2.

3http://Whoosh.readthedocs.io/en/latest/index.html

865



Class Train Test Train Test
1.1 1.1 1.2 1.2

USAGE 0.39 0.49 0.38 0.35
PART-WHOLE 0.19 0.20 0.16 0.16

MODEL-FEATURE 0.27 0.19 0.14 0.21
COMPARE 0.08 0.06 0.03 0.01

RESULT 0.06 0.06 0.10 0.08
TOPIC 0.01 0.01 0.19 0.19

n 1228 355 1249 355

Table 1: Distribution of classes within datasets. Here,
n is the total number of instances in a dataset.

Parameter Value
Window Sizes 2,3,4,5

Number of Filters 25
Word-Embeddings Size (de) 300

Word-Position Embeddings Size (dp) 25
Positive Class Margin (m+) 2.5
Negative Class Margin (m−) 0.5

λ 1.0
α 0.1

learning rate 0.01

Table 2: Hyperparameters used in all experiments.

Our final model is a soft-voting ensemble of
the best models obtained using 10-fold strati-
fied cross-validation. All the models were im-
plemented using TensorFlow4. We trained our
models using a stochastic gradient descent opti-
mizer with momentum (Sutskever et al., 2013).
Lastly, based on our experiments, we chose the
300-dimensional word2vec pre-trained word em-
beddings trained on the Google News corpus.

5.2 Evaluation

F1-Macro F1-Macro
Model Subtask 1.1 Subtask 1.2
CNN 72.8 84.1

CNN+pos 72.1 82.8
CNN+pos+hyp 74.4 82.4

CNN+ pos+hyp+sim 73.7 84.8a

CNN+pos+hyp+sim+rev 74.2b 84.7
—”— (2-staged) 73.9 84.7

Overall Best(DS3Lab) 81.7 90.4

aour official submission ranked second
bour official submission ranked fifth

Table 3: Performance of our final model on Subtasks
1.1 and 1.2. Additional features are incrementally
added to our plain CNN model. Here (2-staged) refers
to the results of our experiments using 2-staged training
method.

.

Table 3 shows the results of our ablation stud-
ies using different feature sets on subtasks 1.1

4https://www.tensorflow.org/

and 1.2. It shows that the simple similarity (sim)
feature helps in case of subtask 1.2, while it de-
grades the performance in case of subtask 1.1.
Similarly, WordNet features with part-of-speech
features boosted the performance only of subtask
1.1. Fine tuning using the two-staged training ap-
proach did not yield any performance gain in ei-
ther the subtasks.

We also evaluated the effect of loss function
choice. Table 4 shows the results of our final

F1-Macro F1-Macro
Loss Function Subtask 1.1 Subtask 1.2

Cross Entropy Loss 72.7 83.9
Ranking Loss 70.6 81.5

Combined Loss 74.2 84.7

Table 4: Effect of Loss Functions

model trained on different loss functions. A com-
bination of ranking loss and cross entropy loss
does yield a performance boost.

While we did not provide a formal submission
for subtask 2, we evaluated our approach on it
given the labeled test data. Table 5 shows the re-

F1-Macro
Model Subtask 2(ANY)
CNN 35.0

CNN+pos 36.6
CNN+pos+hyp 34.7

Overall Best(UWNLP) 50.0

Table 5: Performance of our final model on Subtask
2(Relation Extraction).

sults of our experiments on subtask 2 (relation ex-
traction). While this method did not outperform
the top submissions, it still demonstrated compet-
itive results.

6 Conclusion

Our experiments indicate that pre-training on an
unlabeled corpus did not noticeably impact per-
formance on our evaluation set. Our plain CNN
model (without any external features) has compa-
rable performance to the competition’s best sub-
mission. We also observed improved performance
of our model on Subtask 1.1 when using the Word-
Net features as additional input to the final layer.
Finally, when we combine the cross-entropy and
ranking loss functions, performance of our model
improved on both Subtasks 1.1 and 1.2.

866



References

Steven Bird, Robert Dale, Bonnie Dorr, Bryan Gibson,
Mark Joseph, Min-Yen Kan, Dongwon Lee, Brett
Powley, Dragomir Radev, and Yee Fan Tan. 2008.
The acl anthology reference corpus: A reference
dataset for bibliographic research in computational
linguistics. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC-08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA). ACL An-
thology Identifier: L08-1005.

Massimiliano Ciaramita and Yasemin Altun. 2006.
Broad-coverage sense disambiguation and informa-
tion extraction with a supersense sequence tagger.
In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing, EMNLP
’06, pages 594–602, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res., 12:2493–2537.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In ICML, pages 807–814. Omnipress.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neu-
ral networks.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1532–1543.

CÃcero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. In ACL (1), pages
626–634. The Association for Computer Linguis-
tics.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Unitn: Training deep convolutional neural net-
work for twitter sentiment classification. In
SemEval@NAACL-HLT, pages 464–469. The Asso-
ciation for Computer Linguistics.

Robert Speer and Joshua Chin. 2016. An ensemble
method to produce high-quality word embeddings.
CoRR, abs/1604.01692.

Ilya Sutskever, James Martens, George Dahl, and Geof-
frey Hinton. 2013. On the importance of initializa-
tion and momentum in deep learning. In Proceed-
ings of the 30th International Conference on Inter-
national Conference on Machine Learning - Volume
28, ICML’13, pages III–1139–III–1147. JMLR.org.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via
convolutional deep neural network. In COLING
2014, 25th International Conference on Computa-
tional Linguistics, Proceedings of the Conference:
Technical Papers, August 23-29, 2014, Dublin, Ire-
land, pages 2335–2344.

Ye Zhang and Byron C. Wallace. 2017. A sensitiv-
ity analysis of (and practitioners’ guide to) convo-
lutional neural networks for sentence classification.
In IJCNLP(1), pages 253–263. Asian Federation of
Natural Language Processing.

867


