@inproceedings{sikdar-etal-2018-flytxt,
title = {{F}lytxt{\_}{NTNU} at {S}em{E}val-2018 Task 8: Identifying and Classifying Malware Text Using Conditional Random Fields and Na{\"\i}ve {B}ayes Classifiers},
author = {Sikdar, Utpal Kumar and
Barik, Biswanath and
Gamb{\"a}ck, Bj{\"o}rn},
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1144",
doi = "10.18653/v1/S18-1144",
pages = "890--893",
abstract = "Cybersecurity risks such as malware threaten the personal safety of users, but to identify malware text is a major challenge. The paper proposes a supervised learning approach to identifying malware sentences given a document (subTask1 of SemEval 2018, Task 8), as well as to classifying malware tokens in the sentences (subTask2). The approach achieved good results, ranking second of twelve participants for both subtasks, with F-scores of 57{\%} for subTask1 and 28{\%} for subTask2.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sikdar-etal-2018-flytxt">
<titleInfo>
<title>Flytxt_NTNU at SemEval-2018 Task 8: Identifying and Classifying Malware Text Using Conditional Random Fields and Naïve Bayes Classifiers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Utpal</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Sikdar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Biswanath</namePart>
<namePart type="family">Barik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Björn</namePart>
<namePart type="family">Gambäck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cybersecurity risks such as malware threaten the personal safety of users, but to identify malware text is a major challenge. The paper proposes a supervised learning approach to identifying malware sentences given a document (subTask1 of SemEval 2018, Task 8), as well as to classifying malware tokens in the sentences (subTask2). The approach achieved good results, ranking second of twelve participants for both subtasks, with F-scores of 57% for subTask1 and 28% for subTask2.</abstract>
<identifier type="citekey">sikdar-etal-2018-flytxt</identifier>
<identifier type="doi">10.18653/v1/S18-1144</identifier>
<location>
<url>https://aclanthology.org/S18-1144</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>890</start>
<end>893</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Flytxt_NTNU at SemEval-2018 Task 8: Identifying and Classifying Malware Text Using Conditional Random Fields and Naïve Bayes Classifiers
%A Sikdar, Utpal Kumar
%A Barik, Biswanath
%A Gambäck, Björn
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F sikdar-etal-2018-flytxt
%X Cybersecurity risks such as malware threaten the personal safety of users, but to identify malware text is a major challenge. The paper proposes a supervised learning approach to identifying malware sentences given a document (subTask1 of SemEval 2018, Task 8), as well as to classifying malware tokens in the sentences (subTask2). The approach achieved good results, ranking second of twelve participants for both subtasks, with F-scores of 57% for subTask1 and 28% for subTask2.
%R 10.18653/v1/S18-1144
%U https://aclanthology.org/S18-1144
%U https://doi.org/10.18653/v1/S18-1144
%P 890-893
Markdown (Informal)
[Flytxt_NTNU at SemEval-2018 Task 8: Identifying and Classifying Malware Text Using Conditional Random Fields and Naïve Bayes Classifiers](https://aclanthology.org/S18-1144) (Sikdar et al., SemEval 2018)
ACL