@inproceedings{maldonado-klubicka-2018-adapt,
title = "{ADAPT} at {S}em{E}val-2018 Task 9: Skip-Gram Word Embeddings for Unsupervised Hypernym Discovery in Specialised Corpora",
author = "Maldonado, Alfredo and
Klubi{\v{c}}ka, Filip",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1151",
doi = "10.18653/v1/S18-1151",
pages = "924--927",
abstract = "This paper describes a simple but competitive unsupervised system for hypernym discovery. The system uses skip-gram word embeddings with negative sampling, trained on specialised corpora. Candidate hypernyms for an input word are predicted based based on cosine similarity scores. Two sets of word embedding models were trained separately on two specialised corpora: a medical corpus and a music industry corpus. Our system scored highest in the medical domain among the competing unsupervised systems but performed poorly on the music industry domain. Our system does not depend on any external data other than raw specialised corpora.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maldonado-klubicka-2018-adapt">
<titleInfo>
<title>ADAPT at SemEval-2018 Task 9: Skip-Gram Word Embeddings for Unsupervised Hypernym Discovery in Specialised Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alfredo</namePart>
<namePart type="family">Maldonado</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Klubička</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes a simple but competitive unsupervised system for hypernym discovery. The system uses skip-gram word embeddings with negative sampling, trained on specialised corpora. Candidate hypernyms for an input word are predicted based based on cosine similarity scores. Two sets of word embedding models were trained separately on two specialised corpora: a medical corpus and a music industry corpus. Our system scored highest in the medical domain among the competing unsupervised systems but performed poorly on the music industry domain. Our system does not depend on any external data other than raw specialised corpora.</abstract>
<identifier type="citekey">maldonado-klubicka-2018-adapt</identifier>
<identifier type="doi">10.18653/v1/S18-1151</identifier>
<location>
<url>https://aclanthology.org/S18-1151</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>924</start>
<end>927</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ADAPT at SemEval-2018 Task 9: Skip-Gram Word Embeddings for Unsupervised Hypernym Discovery in Specialised Corpora
%A Maldonado, Alfredo
%A Klubička, Filip
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F maldonado-klubicka-2018-adapt
%X This paper describes a simple but competitive unsupervised system for hypernym discovery. The system uses skip-gram word embeddings with negative sampling, trained on specialised corpora. Candidate hypernyms for an input word are predicted based based on cosine similarity scores. Two sets of word embedding models were trained separately on two specialised corpora: a medical corpus and a music industry corpus. Our system scored highest in the medical domain among the competing unsupervised systems but performed poorly on the music industry domain. Our system does not depend on any external data other than raw specialised corpora.
%R 10.18653/v1/S18-1151
%U https://aclanthology.org/S18-1151
%U https://doi.org/10.18653/v1/S18-1151
%P 924-927
Markdown (Informal)
[ADAPT at SemEval-2018 Task 9: Skip-Gram Word Embeddings for Unsupervised Hypernym Discovery in Specialised Corpora](https://aclanthology.org/S18-1151) (Maldonado & Klubička, SemEval 2018)
ACL