@inproceedings{brychcin-etal-2018-uwb,
title = "{UWB} at {S}em{E}val-2018 Task 10: Capturing Discriminative Attributes from Word Distributions",
author = "Brychc{\'\i}n, Tom{\'a}{\v{s}} and
Hercig, Tom{\'a}{\v{s}} and
Steinberger, Josef and
Konkol, Michal",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1153",
doi = "10.18653/v1/S18-1153",
pages = "935--939",
abstract = "We present our UWB system for the task of capturing discriminative attributes at SemEval 2018. Given two words and an attribute, the system decides, whether this attribute is discriminative between the words or not. Assuming Distributional Hypothesis, i.e., a word meaning is related to the distribution across contexts, we introduce several approaches to compare word contextual information. We experiment with state-of-the-art semantic spaces and with simple co-occurrence statistics. We show the word distribution in the corpus has potential for detecting discriminative attributes. Our system achieves F1 score 72.1{\%} and is ranked {\#}4 among 26 submitted systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="brychcin-etal-2018-uwb">
<titleInfo>
<title>UWB at SemEval-2018 Task 10: Capturing Discriminative Attributes from Word Distributions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tomáš</namePart>
<namePart type="family">Brychcín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomáš</namePart>
<namePart type="family">Hercig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Steinberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Konkol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present our UWB system for the task of capturing discriminative attributes at SemEval 2018. Given two words and an attribute, the system decides, whether this attribute is discriminative between the words or not. Assuming Distributional Hypothesis, i.e., a word meaning is related to the distribution across contexts, we introduce several approaches to compare word contextual information. We experiment with state-of-the-art semantic spaces and with simple co-occurrence statistics. We show the word distribution in the corpus has potential for detecting discriminative attributes. Our system achieves F1 score 72.1% and is ranked #4 among 26 submitted systems.</abstract>
<identifier type="citekey">brychcin-etal-2018-uwb</identifier>
<identifier type="doi">10.18653/v1/S18-1153</identifier>
<location>
<url>https://aclanthology.org/S18-1153</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>935</start>
<end>939</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UWB at SemEval-2018 Task 10: Capturing Discriminative Attributes from Word Distributions
%A Brychcín, Tomáš
%A Hercig, Tomáš
%A Steinberger, Josef
%A Konkol, Michal
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F brychcin-etal-2018-uwb
%X We present our UWB system for the task of capturing discriminative attributes at SemEval 2018. Given two words and an attribute, the system decides, whether this attribute is discriminative between the words or not. Assuming Distributional Hypothesis, i.e., a word meaning is related to the distribution across contexts, we introduce several approaches to compare word contextual information. We experiment with state-of-the-art semantic spaces and with simple co-occurrence statistics. We show the word distribution in the corpus has potential for detecting discriminative attributes. Our system achieves F1 score 72.1% and is ranked #4 among 26 submitted systems.
%R 10.18653/v1/S18-1153
%U https://aclanthology.org/S18-1153
%U https://doi.org/10.18653/v1/S18-1153
%P 935-939
Markdown (Informal)
[UWB at SemEval-2018 Task 10: Capturing Discriminative Attributes from Word Distributions](https://aclanthology.org/S18-1153) (Brychcín et al., SemEval 2018)
ACL