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Abstract

Luminoso participated in the SemEval 2018
task on “Capturing Discriminative Attributes”
with a system based on ConceptNet, an open
knowledge graph focused on general knowl-
edge. In this paper, we describe how we
trained a linear classifier on a small number of
semantically-informed features to achieve an
F1 score of 0.7368 on the task, close to the
task’s high score of 0.75.

1 Introduction

Word embeddings are most effective when they
learn from both unstructured text and a graph
of general knowledge (Speer and Lowry-Duda,
2017). ConceptNet 5 (Speer et al., 2017) is an
open-data knowledge graph that is well suited for
this purpose. It is accompanied by a pre-built word
embedding model known as ConceptNet Number-
batch1, which combines skip-gram embeddings
learned from unstructured text with the relational
knowledge in ConceptNet.

A straightforward application of the Concept-
Net Numberbatch embeddings took first place in
SemEval 2017 task 2, on semantic word similarity.
For SemEval 2018, we built a system with these
embeddings as a major component for a slightly
more complex task.

The Capturing Discriminative Attributes task
(Paperno et al., 2018) emphasizes the ability of a
semantic model to recognize relevant differences
between terms, not just their similarities. As the
task description states, “If you can tell that ameri-
cano is similar to capuccino and espresso but you
can’t tell the difference between them, you don’t
know what americano is.”

The ConceptNet Numberbatch embeddings
only measure the similarity of terms, and we hy-

1https://github.com/commonsense/
conceptnet-numberbatch

pothesized that we would need to represent more
specific relationships. For example, the input
triple “frog, snail, legs” asks us to determine
whether “legs” is an attribute that distinguishes
“frog” from “snail”. The answer is yes, because
a frog has legs while a snail does not. The has re-
lationship is one example of a specific relationship
that is represented in ConceptNet.

To capture this kind of specific relationship, we
built a model that infers relations between Con-
ceptNet nodes, trained on the existing edges in
ConceptNet and random negative examples. There
are many models designed for this purpose; the
one we decided on is based on Semantic Matching
Energy (SME) (Bordes et al., 2014).

Our features consisted of direct similarity over
ConceptNet Numberbatch embeddings, the rela-
tionships inferred over ConceptNet by SME, fea-
tures that compose ConceptNet with other re-
sources (WordNet and Wikipedia), and a purely
corpus-based feature that looks up two-word
phrases in the Google Books dataset.

We combined these features based on Concept-
Net with features extracted from a few other re-
sources in a LinearSVC classifier, using liblinear
(Fan et al., 2008) via scikit-learn (Pedregosa et al.,
2011). The classifier used only 15 features, of
which 12 ended up with non-zero weights, from
the five sources described. We aimed to avoid
complexity in the classifier in order to prevent
overfitting to the validation set; the power of the
classifier should be in its features.

The classifier produced by this design (submit-
ted late to the contest leaderboard) successfully
avoided overfitting. It performed better on the test
set than on the validation set, with a test F1 score
of 0.7368, whose margin of error overlaps with the
evaluation’s reported high score of 0.75.

At evaluation time, we accidentally submitted
our results on the validation data, instead of the
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test data, to the SemEval leaderboard. Our code
had truncated the results to the length of the test
data, causing us to not notice the mismatch. This
erroneous submission got a very low score, of
course. This paper presents the corrected test re-
sults, which we submitted to the post-evaluation
CodaLab leaderboard immediately after the results
appeared. We did not change the classifier or data;
the change was a one-line change to our code for
outputting the classifier’s predictions on the test
set instead on the validation set.

2 Features

In detail, these are the five sources of features we
used:

ConceptNet vector similarity. Given the triple
(term1, term2, att), we look up the ConceptNet
Numberbatch embeddings for the root words of
the three terms (with root words determined using
ConceptNet’s built-in lemmatizer). We determine
the cosine similarity of (term1, att) and the co-
sine similarity of (term2, att). We then subtract
the square roots of the similarity scores (floored at
0). If this difference is large enough, it indicates
a positive example, a discriminative attribute that
applies to term1 and not to term2.

ConceptNet relational inference. We train a
Semantic Matching Energy model to represent
ConceptNet nodes and relations as vectors, along
with a 3-tensor of interactions between them. This
model can then assign a confidence score to any
triple (a relation connecting two terms). We used
this model to infer values for each of 11 differ-
ent ConceptNet relations. As in the case of vector
similarity, each feature value is the difference be-
tween the value inferred for rel(term1, att) and
rel(term2, att). This model is described in more
detail in the next section.

Wikipedia lead sections. This feature expands
on ConceptNet vector similarity: instead of com-
puting the similarity between the attribute and the
term, it computes the maximum of the similarity
between the attribute and any word that appears
in the lead section of the Wikipedia article for the
term (Wikipedia, 2017). This helps to identify at-
tributes that would be used to define the term, such
as “amphibian” as an attribute for “frog”.

WordNet entries. This feature is similar to the
“Wikipedia lead sections” feature. It expands

each term by looking up its synonyms in Word-
Net (Miller et al., 1998), the synonyms in synsets
it is connected to, and the words in its gloss (defi-
nition), and taking the maximum similarity of the
attribute to any of these terms.

Google Books 2-grams. This feature deter-
mines if term1 forms a significant two-word
phrase with att , more than term2 does, based
on the Google Books English Fiction data (Lin
et al., 2012). The “significance” (s) of a two-word
phrase is determined by comparing the smoothed
log-likelihood of the individual unigrams to the
smoothed log-likelihood of the phrase:

s(term, att) = 10 + log10(#(term, att) + 1)

− log10((#(term) + 105)(#(att) + 105))

where # represents the number of occurrences of
a unigram or bigram in the corpus.

The “ConceptNet relational inference” feature
provides 11 entries to the feature vectors, while
the other sources each provide one. In total, there
are 15 features that represent each input triple.

Across multiple data sources, we use the square
root of cosine similarity to measure the strength
of the match between a term and an attribute. Be-
cause attributes should be at least somewhat re-
lated to the terms they describe, and because weak
semantic similarity can be interpreted as related-
ness, the square root helps us emphasize the im-
portant part of the scale. The difference between
“somewhat related” and “not related” is more im-
portant to the task than the difference between
“very similar” and “somewhat related”, as a dis-
criminative attribute should ideally be unrelated to
the second term.

2.1 The Relational Inference Model
To infer truth values for ConceptNet relations, we
use a variant of the Semantic Matching Energy
model (Bordes et al., 2014), adapted to work well
on ConceptNet’s vocabulary of relations. Instead
of embedding relations in the same space as the
terms, this model assigns new 10-dimensional em-
beddings to ConceptNet relations, yielding a com-
pact model for ConceptNet’s relatively small set
of relations.

The model is trained to distinguish positive ex-
amples of ConceptNet edges from negative ones.
The positive examples are edges directly con-
tained in ConceptNet, or those that are entailed
by changing the relation to a more general one or
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switching the directionality of a symmetric rela-
tion. The negative examples come from replac-
ing one of the terms with a random other term,
the relation with a random unentailed relation, or
switching the directionality of an asymmetric re-
lation.

We trained this model for approximately 3
million iterations (about 4 days of computa-
tion on an nVidia Titan Xp) using PyTorch
(Paszke et al., 2017). The code of the
model is available at https://github.com/
LuminosoInsight/conceptnet-sme.

To extract features for the discriminative at-
tribute task, we focus on a subset of Concept-
Net relations that would plausibly be used as at-
tributes: RelatedTo, IsA, HasA, PartOf, Capa-
bleOf, UsedFor, HasContext, HasProperty, and
AtLocation.

For most of these relations, the first argument is
the term, and the second argument is the attribute.
We use two additional features for PartOf and At-
Location with their arguments swapped, so that the
attribute is the first argument. The generic rela-
tion RelatedTo, unlike the others, is intended to be
symmetric, so we add its value to the value of its
swapped version and use it as a single feature.

3 The Overfitting-Resistant Classifier

The classifier that we use to make a decision based
on these features is scikit-learn’s LinearSVC, us-
ing the default parameters in scikit-learn 0.19.1.
(In Section 4, we discuss other models and param-
eters that we tried.) This classifier makes effective
use of the features while being simple enough to
avoid some amount of overfitting.

One aspect of the classifier that made a notice-
able difference was the scaling of the features. We
tried L1 and L2-normalizing the columns of the in-
put matrix, representing the values of each feature,
and decided on L2 normalization.

We took advantage of the design of our features
and the asymmetry of the task as a way to further
mitigate overfitting. All of the features were de-
signed to identify a property that term1 has and
term2 does not, as is the case for the discrimi-
native examples, so they should all make a non-
negative contribution to a feature being discrimi-
native. We can inspect the coefficients of the fea-
tures in the SVC’s decision boundary. If any fea-
ture gets a negative weight, it is likely a spurious
result from overfitting to the training data. So, af-

Feature Coefficient
ConceptNet vector similarity 13.82
SME: RelatedTo 14.01
SME: (x IsA a) 2.13
SME: (x HasA a) 0.00
SME: (x PartOf a) 0.56
SME: (x CapableOf a) 3.72
SME: (x UsedFor a) 0.92
SME: (x HasContext a) 0.88
SME: (x HasProperty a) 0.00
SME: (x AtLocation a) 0.00
SME: (a PartOf x) 3.22
SME: (a AtLocation x) 0.69
Wikipedia lead sections 12.46
WordNet relatedness 13.95
Google Ngrams 28.82

Table 1: Coefficients of each feature in our linear clas-
sifier. x represents a term and a represents the attribute.

ter training the classifier, we clip the coefficients
of the decision boundary, setting all negative coef-
ficients to zero.

If we were to remove these features and re-train,
or require non-negative coefficients as a constraint
on the classifier, then other features would inher-
ently become responsible for overfitting. By neu-
tralizing the features after training, we keep the
features that are working well as they are, and re-
move a part of the model that appears to purely
represent overfitting. Indeed, clipping the negative
coefficients in this way increased our performance
on the validation set.

Table 1 shows the coeffcients assigned to each
feature based on the training data.

4 Other experiments

There are other features that we tried and later dis-
carded. We experimented with a feature similar to
the Google Books 2-grams feature, based on the
AOL query logs dataset (Pass et al., 2006). It did
not add to the performance, most likely because
any information it could provide was also provided
by Google Books 2-grams. Similiarly, we tried ex-
tending the Google Books 2-grams data to include
the first and third words of a selection of 3-grams,
but this, too, appeared redundant with the 2-grams.

We also experimented with a feature based on
bounding box annotations available in the Open-
Images dataset (Krasin et al., 2017). We hoped
it would help us capture attributes such as colors,
materials, and shapes. While this feature did not
improve the classifier’s performance on the vali-
dation set, it did slightly improve the performance
on the test set.

Before deciding on scikit-learn’s LinearSVC,
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Dataset F1 Error (SEM)
train .7617 ± .0032
validation .7281 ± .0085
test .7368 ± .0091

Table 2: F1 scores by dataset. The reported F1 score is
the arithmetic mean of the F1 scores for both classes.
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Figure 1: This ablation analysis shows the contribu-
tions of subsets of the five sources of features. Ellipses
indicate standard error of the mean, assuming that the
data is sampled from a larger, unseen set.

we experimented with a number of other classi-
fiers. This included random forests, differentiable
models made of multiple ReLU and sigmoid lay-
ers, and SVM with an RBF kernel or a polynomial
kernel.

We also experimented with different parame-
ters to LinearSVC, such as changing the default
value of the penalty parameter C of the error
term, changing the penalty from L2 to L1, solv-
ing the primal optimization problem instead of the
dual problem, and changing the loss from squared
hinge to hinge. These changes either led to lower
performance or had no significant effect, so in the
end we used LinearSVC with the default parame-
ters for scikit-learn version 0.19.1.

5 Results

When trained on the training set, the classifier
we describe achieved an F1 score of 0.7617 on
the training set, 0.7281 on the validation set, and
0.7368 on the test set. Table 2 shows these scores
along with their standard error of the mean, sup-
posing that these data sets were randomly sampled
from larger sets.

5.1 Ablation Analysis

We performed an ablation analysis to see what the
contribution of each of our five sources of features
was. We evaluated classifiers that used all non-
empty subsets of these sources. Figure 1 plots the
results of these 31 classifiers when evaluated on
the validation set and the test set.

It is likely that the classifier with all five sources
(ABCDE) performed the best overall. It is in a sta-
tistical tie (p > .05) with ABDE, the classifier that
omits Wikipedia as a source.

Most of the classifiers perfomed better on the
test set than on the validation set, as shown by
the dotted line. Some simple classifiers with very
few features performed particularly well on the
test set. One surprisingly high-performing clas-
sifier was A (ConceptNet vector similarity), which
gets a test F1 score of 0.7355 ± 0.0091. This is
simple enough to be called a heuristic instead of
a classifier, and we can express it in closed form.
It is equivalent to this expression over ConceptNet
Numberbatch embeddings:

sim(term1, att)− sim(term2, att) > 0.0961

where sim(a, b) =

√
max

(
a·b

||a||·||b|| , 0
)

.

It is interesting to note that source A (Concept-
Net vector similarity) appears to dominate source
B (ConceptNet SME) on the test data. SME led to
improvements on the validation set, but on the test
set, any classifier containing AB performs equal to
or worse than the same classifier with B removed.
This may indicate that the SME features were the
most prone to overfitting, or that the validation set
generally required making more difficult distinc-
tions than the test set.

6 Reproducing These Results

The code for our classifier is avail-
able on GitHub at https://
github.com/LuminosoInsight/
semeval-discriminatt, and its in-
put data is downloadable from https:
//zenodo.org/record/1183358.
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