@inproceedings{ding-zhou-2018-ynu,
title = "{YNU}{\_}{D}eep at {S}em{E}val-2018 Task 11: An Ensemble of Attention-based {B}i{LSTM} Models for Machine Comprehension",
author = "Ding, Peng and
Zhou, Xiaobing",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1174/",
doi = "10.18653/v1/S18-1174",
pages = "1043--1047",
abstract = "We firstly use GloVe to learn the distributed representations automatically from the instance, question and answer triples. Then an attentionbased Bidirectional LSTM (BiLSTM) model is used to encode the triples. We also perform a simple ensemble method to improve the effectiveness of our model. The system we developed obtains an encouraging result on this task. It achieves the accuracy 0.7472 on the test set. We rank 5th according to the official ranking."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ding-zhou-2018-ynu">
<titleInfo>
<title>YNU_Deep at SemEval-2018 Task 11: An Ensemble of Attention-based BiLSTM Models for Machine Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peng</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobing</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We firstly use GloVe to learn the distributed representations automatically from the instance, question and answer triples. Then an attentionbased Bidirectional LSTM (BiLSTM) model is used to encode the triples. We also perform a simple ensemble method to improve the effectiveness of our model. The system we developed obtains an encouraging result on this task. It achieves the accuracy 0.7472 on the test set. We rank 5th according to the official ranking.</abstract>
<identifier type="citekey">ding-zhou-2018-ynu</identifier>
<identifier type="doi">10.18653/v1/S18-1174</identifier>
<location>
<url>https://aclanthology.org/S18-1174/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1043</start>
<end>1047</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNU_Deep at SemEval-2018 Task 11: An Ensemble of Attention-based BiLSTM Models for Machine Comprehension
%A Ding, Peng
%A Zhou, Xiaobing
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F ding-zhou-2018-ynu
%X We firstly use GloVe to learn the distributed representations automatically from the instance, question and answer triples. Then an attentionbased Bidirectional LSTM (BiLSTM) model is used to encode the triples. We also perform a simple ensemble method to improve the effectiveness of our model. The system we developed obtains an encouraging result on this task. It achieves the accuracy 0.7472 on the test set. We rank 5th according to the official ranking.
%R 10.18653/v1/S18-1174
%U https://aclanthology.org/S18-1174/
%U https://doi.org/10.18653/v1/S18-1174
%P 1043-1047
Markdown (Informal)
[YNU_Deep at SemEval-2018 Task 11: An Ensemble of Attention-based BiLSTM Models for Machine Comprehension](https://aclanthology.org/S18-1174/) (Ding & Zhou, SemEval 2018)
ACL