@inproceedings{sheng-etal-2018-ecnu,
title = "{ECNU} at {S}em{E}val-2018 Task 11: Using Deep Learning Method to Address Machine Comprehension Task",
author = "Sheng, Yixuan and
Lan, Man and
Wu, Yuanbin",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1175/",
doi = "10.18653/v1/S18-1175",
pages = "1048--1052",
abstract = "This paper describes the system we submitted to the Task 11 in SemEval 2018, i.e., Machine Comprehension using Commonsense Knowledge. Given a passage and some questions that each have two candidate answers, this task requires the participate system to select out one answer meet the meaning of original text or commonsense knowledge from the candidate answers. For this task, we use a deep learning method to obtain final predict answer by calculating relevance of choices representations and question-aware document representation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sheng-etal-2018-ecnu">
<titleInfo>
<title>ECNU at SemEval-2018 Task 11: Using Deep Learning Method to Address Machine Comprehension Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yixuan</namePart>
<namePart type="family">Sheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Man</namePart>
<namePart type="family">Lan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanbin</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the system we submitted to the Task 11 in SemEval 2018, i.e., Machine Comprehension using Commonsense Knowledge. Given a passage and some questions that each have two candidate answers, this task requires the participate system to select out one answer meet the meaning of original text or commonsense knowledge from the candidate answers. For this task, we use a deep learning method to obtain final predict answer by calculating relevance of choices representations and question-aware document representation.</abstract>
<identifier type="citekey">sheng-etal-2018-ecnu</identifier>
<identifier type="doi">10.18653/v1/S18-1175</identifier>
<location>
<url>https://aclanthology.org/S18-1175/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1048</start>
<end>1052</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ECNU at SemEval-2018 Task 11: Using Deep Learning Method to Address Machine Comprehension Task
%A Sheng, Yixuan
%A Lan, Man
%A Wu, Yuanbin
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F sheng-etal-2018-ecnu
%X This paper describes the system we submitted to the Task 11 in SemEval 2018, i.e., Machine Comprehension using Commonsense Knowledge. Given a passage and some questions that each have two candidate answers, this task requires the participate system to select out one answer meet the meaning of original text or commonsense knowledge from the candidate answers. For this task, we use a deep learning method to obtain final predict answer by calculating relevance of choices representations and question-aware document representation.
%R 10.18653/v1/S18-1175
%U https://aclanthology.org/S18-1175/
%U https://doi.org/10.18653/v1/S18-1175
%P 1048-1052
Markdown (Informal)
[ECNU at SemEval-2018 Task 11: Using Deep Learning Method to Address Machine Comprehension Task](https://aclanthology.org/S18-1175/) (Sheng et al., SemEval 2018)
ACL