@inproceedings{reznikova-derczynski-2018-iucm,
title = "{IUCM} at {S}em{E}val-2018 Task 11: Similar-Topic Texts as a Comprehension Knowledge Source",
author = "Reznikova, Sofia and
Derczynski, Leon",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1179/",
doi = "10.18653/v1/S18-1179",
pages = "1068--1072",
abstract = "This paper describes the IUCM entry at SemEval-2018 Task 11, on machine comprehension using commonsense knowledge. First, clustering and topic modeling are used to divide given texts into topics. Then, during the answering phase, other texts of the same topic are retrieved and used as commonsense knowledge. Finally, the answer is selected. While clustering itself shows good results, finding an answer proves to be more challenging. This paper reports the results of system evaluation and suggests potential improvements."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="reznikova-derczynski-2018-iucm">
<titleInfo>
<title>IUCM at SemEval-2018 Task 11: Similar-Topic Texts as a Comprehension Knowledge Source</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sofia</namePart>
<namePart type="family">Reznikova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the IUCM entry at SemEval-2018 Task 11, on machine comprehension using commonsense knowledge. First, clustering and topic modeling are used to divide given texts into topics. Then, during the answering phase, other texts of the same topic are retrieved and used as commonsense knowledge. Finally, the answer is selected. While clustering itself shows good results, finding an answer proves to be more challenging. This paper reports the results of system evaluation and suggests potential improvements.</abstract>
<identifier type="citekey">reznikova-derczynski-2018-iucm</identifier>
<identifier type="doi">10.18653/v1/S18-1179</identifier>
<location>
<url>https://aclanthology.org/S18-1179/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1068</start>
<end>1072</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IUCM at SemEval-2018 Task 11: Similar-Topic Texts as a Comprehension Knowledge Source
%A Reznikova, Sofia
%A Derczynski, Leon
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F reznikova-derczynski-2018-iucm
%X This paper describes the IUCM entry at SemEval-2018 Task 11, on machine comprehension using commonsense knowledge. First, clustering and topic modeling are used to divide given texts into topics. Then, during the answering phase, other texts of the same topic are retrieved and used as commonsense knowledge. Finally, the answer is selected. While clustering itself shows good results, finding an answer proves to be more challenging. This paper reports the results of system evaluation and suggests potential improvements.
%R 10.18653/v1/S18-1179
%U https://aclanthology.org/S18-1179/
%U https://doi.org/10.18653/v1/S18-1179
%P 1068-1072
Markdown (Informal)
[IUCM at SemEval-2018 Task 11: Similar-Topic Texts as a Comprehension Knowledge Source](https://aclanthology.org/S18-1179/) (Reznikova & Derczynski, SemEval 2018)
ACL