@inproceedings{kallmeyer-etal-2018-coarse,
title = "Coarse Lexical Frame Acquisition at the Syntax{--}Semantics Interface Using a Latent-Variable {PCFG} Model",
author = "Kallmeyer, Laura and
QasemiZadeh, Behrang and
Cheung, Jackie Chi Kit",
editor = "Nissim, Malvina and
Berant, Jonathan and
Lenci, Alessandro",
booktitle = "Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-2016/",
doi = "10.18653/v1/S18-2016",
pages = "130--141",
abstract = "We present a method for unsupervised lexical frame acquisition at the syntax{--}semantics interface. Given a set of input strings derived from dependency parses, our method generates a set of clusters that resemble lexical frame structures. Our work is motivated not only by its practical applications (e.g., to build, or expand the coverage of lexical frame databases), but also to gain linguistic insight into frame structures with respect to lexical distributions in relation to grammatical structures. We model our task using a hierarchical Bayesian network and employ tools and methods from latent variable probabilistic context free grammars (L-PCFGs) for statistical inference and parameter fitting, for which we propose a new split and merge procedure. We show that our model outperforms several baselines on a portion of the Wall Street Journal sentences that we have newly annotated for evaluation purposes."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kallmeyer-etal-2018-coarse">
<titleInfo>
<title>Coarse Lexical Frame Acquisition at the Syntax–Semantics Interface Using a Latent-Variable PCFG Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Kallmeyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Behrang</namePart>
<namePart type="family">QasemiZadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jackie</namePart>
<namePart type="given">Chi</namePart>
<namePart type="given">Kit</namePart>
<namePart type="family">Cheung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Berant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a method for unsupervised lexical frame acquisition at the syntax–semantics interface. Given a set of input strings derived from dependency parses, our method generates a set of clusters that resemble lexical frame structures. Our work is motivated not only by its practical applications (e.g., to build, or expand the coverage of lexical frame databases), but also to gain linguistic insight into frame structures with respect to lexical distributions in relation to grammatical structures. We model our task using a hierarchical Bayesian network and employ tools and methods from latent variable probabilistic context free grammars (L-PCFGs) for statistical inference and parameter fitting, for which we propose a new split and merge procedure. We show that our model outperforms several baselines on a portion of the Wall Street Journal sentences that we have newly annotated for evaluation purposes.</abstract>
<identifier type="citekey">kallmeyer-etal-2018-coarse</identifier>
<identifier type="doi">10.18653/v1/S18-2016</identifier>
<location>
<url>https://aclanthology.org/S18-2016/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>130</start>
<end>141</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Coarse Lexical Frame Acquisition at the Syntax–Semantics Interface Using a Latent-Variable PCFG Model
%A Kallmeyer, Laura
%A QasemiZadeh, Behrang
%A Cheung, Jackie Chi Kit
%Y Nissim, Malvina
%Y Berant, Jonathan
%Y Lenci, Alessandro
%S Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F kallmeyer-etal-2018-coarse
%X We present a method for unsupervised lexical frame acquisition at the syntax–semantics interface. Given a set of input strings derived from dependency parses, our method generates a set of clusters that resemble lexical frame structures. Our work is motivated not only by its practical applications (e.g., to build, or expand the coverage of lexical frame databases), but also to gain linguistic insight into frame structures with respect to lexical distributions in relation to grammatical structures. We model our task using a hierarchical Bayesian network and employ tools and methods from latent variable probabilistic context free grammars (L-PCFGs) for statistical inference and parameter fitting, for which we propose a new split and merge procedure. We show that our model outperforms several baselines on a portion of the Wall Street Journal sentences that we have newly annotated for evaluation purposes.
%R 10.18653/v1/S18-2016
%U https://aclanthology.org/S18-2016/
%U https://doi.org/10.18653/v1/S18-2016
%P 130-141
Markdown (Informal)
[Coarse Lexical Frame Acquisition at the Syntax–Semantics Interface Using a Latent-Variable PCFG Model](https://aclanthology.org/S18-2016/) (Kallmeyer et al., *SEM 2018)
ACL