@inproceedings{basile-etal-2018-measuring,
title = "Measuring Frame Instance Relatedness",
author = "Basile, Valerio and
Lopez Condori, Roque and
Cabrio, Elena",
editor = "Nissim, Malvina and
Berant, Jonathan and
Lenci, Alessandro",
booktitle = "Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-2029",
doi = "10.18653/v1/S18-2029",
pages = "245--254",
abstract = "Frame semantics is a well-established framework to represent the meaning of natural language in computational terms. In this work, we aim to propose a quantitative measure of relatedness between pairs of frame instances. We test our method on a dataset of sentence pairs, highlighting the correlation between our metric and human judgments of semantic similarity. Furthermore, we propose an application of our measure for clustering frame instances to extract prototypical knowledge from natural language.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="basile-etal-2018-measuring">
<titleInfo>
<title>Measuring Frame Instance Relatedness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Valerio</namePart>
<namePart type="family">Basile</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roque</namePart>
<namePart type="family">Lopez Condori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Cabrio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Berant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Frame semantics is a well-established framework to represent the meaning of natural language in computational terms. In this work, we aim to propose a quantitative measure of relatedness between pairs of frame instances. We test our method on a dataset of sentence pairs, highlighting the correlation between our metric and human judgments of semantic similarity. Furthermore, we propose an application of our measure for clustering frame instances to extract prototypical knowledge from natural language.</abstract>
<identifier type="citekey">basile-etal-2018-measuring</identifier>
<identifier type="doi">10.18653/v1/S18-2029</identifier>
<location>
<url>https://aclanthology.org/S18-2029</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>245</start>
<end>254</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Measuring Frame Instance Relatedness
%A Basile, Valerio
%A Lopez Condori, Roque
%A Cabrio, Elena
%Y Nissim, Malvina
%Y Berant, Jonathan
%Y Lenci, Alessandro
%S Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F basile-etal-2018-measuring
%X Frame semantics is a well-established framework to represent the meaning of natural language in computational terms. In this work, we aim to propose a quantitative measure of relatedness between pairs of frame instances. We test our method on a dataset of sentence pairs, highlighting the correlation between our metric and human judgments of semantic similarity. Furthermore, we propose an application of our measure for clustering frame instances to extract prototypical knowledge from natural language.
%R 10.18653/v1/S18-2029
%U https://aclanthology.org/S18-2029
%U https://doi.org/10.18653/v1/S18-2029
%P 245-254
Markdown (Informal)
[Measuring Frame Instance Relatedness](https://aclanthology.org/S18-2029) (Basile et al., *SEM 2018)
ACL
- Valerio Basile, Roque Lopez Condori, and Elena Cabrio. 2018. Measuring Frame Instance Relatedness. In Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics, pages 245–254, New Orleans, Louisiana. Association for Computational Linguistics.