@inproceedings{hatty-etal-2019-surel,
title = "{SUR}el: A Gold Standard for Incorporating Meaning Shifts into Term Extraction",
author = {H{\"a}tty, Anna and
Schlechtweg, Dominik and
Schulte im Walde, Sabine},
editor = "Mihalcea, Rada and
Shutova, Ekaterina and
Ku, Lun-Wei and
Evang, Kilian and
Poria, Soujanya",
booktitle = "Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*{SEM} 2019)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-1001/",
doi = "10.18653/v1/S19-1001",
pages = "1--8",
abstract = "We introduce SURel, a novel dataset with human-annotated meaning shifts between general-language and domain-specific contexts. We show that meaning shifts of term candidates cause errors in term extraction, and demonstrate that the SURel annotation reflects these errors. Furthermore, we illustrate that SURel enables us to assess optimisations of term extraction techniques when incorporating meaning shifts."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hatty-etal-2019-surel">
<titleInfo>
<title>SURel: A Gold Standard for Incorporating Meaning Shifts into Term Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Hätty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dominik</namePart>
<namePart type="family">Schlechtweg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabine</namePart>
<namePart type="family">Schulte im Walde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kilian</namePart>
<namePart type="family">Evang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soujanya</namePart>
<namePart type="family">Poria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce SURel, a novel dataset with human-annotated meaning shifts between general-language and domain-specific contexts. We show that meaning shifts of term candidates cause errors in term extraction, and demonstrate that the SURel annotation reflects these errors. Furthermore, we illustrate that SURel enables us to assess optimisations of term extraction techniques when incorporating meaning shifts.</abstract>
<identifier type="citekey">hatty-etal-2019-surel</identifier>
<identifier type="doi">10.18653/v1/S19-1001</identifier>
<location>
<url>https://aclanthology.org/S19-1001/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1</start>
<end>8</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SURel: A Gold Standard for Incorporating Meaning Shifts into Term Extraction
%A Hätty, Anna
%A Schlechtweg, Dominik
%A Schulte im Walde, Sabine
%Y Mihalcea, Rada
%Y Shutova, Ekaterina
%Y Ku, Lun-Wei
%Y Evang, Kilian
%Y Poria, Soujanya
%S Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F hatty-etal-2019-surel
%X We introduce SURel, a novel dataset with human-annotated meaning shifts between general-language and domain-specific contexts. We show that meaning shifts of term candidates cause errors in term extraction, and demonstrate that the SURel annotation reflects these errors. Furthermore, we illustrate that SURel enables us to assess optimisations of term extraction techniques when incorporating meaning shifts.
%R 10.18653/v1/S19-1001
%U https://aclanthology.org/S19-1001/
%U https://doi.org/10.18653/v1/S19-1001
%P 1-8
Markdown (Informal)
[SURel: A Gold Standard for Incorporating Meaning Shifts into Term Extraction](https://aclanthology.org/S19-1001/) (Hätty et al., *SEM 2019)
ACL