@inproceedings{herzig-etal-2019-bot2vec,
title = "{B}ot2{V}ec: Learning Representations of Chatbots",
author = "Herzig, Jonathan and
Sandbank, Tommy and
Shmueli-Scheuer, Michal and
Konopnicki, David",
editor = "Mihalcea, Rada and
Shutova, Ekaterina and
Ku, Lun-Wei and
Evang, Kilian and
Poria, Soujanya",
booktitle = "Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*{SEM} 2019)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-1009/",
doi = "10.18653/v1/S19-1009",
pages = "75--84",
abstract = "Chatbots (i.e., bots) are becoming widely used in multiple domains, along with supporting bot programming platforms. These platforms are equipped with novel testing tools aimed at improving the quality of individual chatbots. Doing so requires an understanding of what sort of bots are being built (captured by their underlying conversation graphs) and how well they perform (derived through analysis of conversation logs). In this paper, we propose a new model, Bot2Vec, that embeds bots to a compact representation based on their structure and usage logs. Then, we utilize Bot2Vec representations to improve the quality of two bot analysis tasks. Using conversation data and graphs of over than 90 bots, we show that Bot2Vec representations improve detection performance by more than 16{\%} for both tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="herzig-etal-2019-bot2vec">
<titleInfo>
<title>Bot2Vec: Learning Representations of Chatbots</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Herzig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tommy</namePart>
<namePart type="family">Sandbank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Shmueli-Scheuer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Konopnicki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kilian</namePart>
<namePart type="family">Evang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soujanya</namePart>
<namePart type="family">Poria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Chatbots (i.e., bots) are becoming widely used in multiple domains, along with supporting bot programming platforms. These platforms are equipped with novel testing tools aimed at improving the quality of individual chatbots. Doing so requires an understanding of what sort of bots are being built (captured by their underlying conversation graphs) and how well they perform (derived through analysis of conversation logs). In this paper, we propose a new model, Bot2Vec, that embeds bots to a compact representation based on their structure and usage logs. Then, we utilize Bot2Vec representations to improve the quality of two bot analysis tasks. Using conversation data and graphs of over than 90 bots, we show that Bot2Vec representations improve detection performance by more than 16% for both tasks.</abstract>
<identifier type="citekey">herzig-etal-2019-bot2vec</identifier>
<identifier type="doi">10.18653/v1/S19-1009</identifier>
<location>
<url>https://aclanthology.org/S19-1009/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>75</start>
<end>84</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bot2Vec: Learning Representations of Chatbots
%A Herzig, Jonathan
%A Sandbank, Tommy
%A Shmueli-Scheuer, Michal
%A Konopnicki, David
%Y Mihalcea, Rada
%Y Shutova, Ekaterina
%Y Ku, Lun-Wei
%Y Evang, Kilian
%Y Poria, Soujanya
%S Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F herzig-etal-2019-bot2vec
%X Chatbots (i.e., bots) are becoming widely used in multiple domains, along with supporting bot programming platforms. These platforms are equipped with novel testing tools aimed at improving the quality of individual chatbots. Doing so requires an understanding of what sort of bots are being built (captured by their underlying conversation graphs) and how well they perform (derived through analysis of conversation logs). In this paper, we propose a new model, Bot2Vec, that embeds bots to a compact representation based on their structure and usage logs. Then, we utilize Bot2Vec representations to improve the quality of two bot analysis tasks. Using conversation data and graphs of over than 90 bots, we show that Bot2Vec representations improve detection performance by more than 16% for both tasks.
%R 10.18653/v1/S19-1009
%U https://aclanthology.org/S19-1009/
%U https://doi.org/10.18653/v1/S19-1009
%P 75-84
Markdown (Informal)
[Bot2Vec: Learning Representations of Chatbots](https://aclanthology.org/S19-1009/) (Herzig et al., *SEM 2019)
ACL
- Jonathan Herzig, Tommy Sandbank, Michal Shmueli-Scheuer, and David Konopnicki. 2019. Bot2Vec: Learning Representations of Chatbots. In Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019), pages 75–84, Minneapolis, Minnesota. Association for Computational Linguistics.