@inproceedings{nastase-kotnis-2019-abstract,
title = "Abstract Graphs and Abstract Paths for Knowledge Graph Completion",
author = "Nastase, Vivi and
Kotnis, Bhushan",
editor = "Mihalcea, Rada and
Shutova, Ekaterina and
Ku, Lun-Wei and
Evang, Kilian and
Poria, Soujanya",
booktitle = "Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*{SEM} 2019)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-1016/",
doi = "10.18653/v1/S19-1016",
pages = "147--157",
abstract = "Knowledge graphs, which provide numerous facts in a machine-friendly format, are incomplete. Information that we induce from such graphs {--} e.g. entity embeddings, relation representations or patterns {--} will be affected by the imbalance in the information captured in the graph {--} by biasing representations, or causing us to miss potential patterns. To partially compensate for this situation we describe a method for representing knowledge graphs that capture an intensional representation of the original extensional information. This representation is very compact, and it abstracts away from individual links, allowing us to find better path candidates, as shown by the results of link prediction using this information."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nastase-kotnis-2019-abstract">
<titleInfo>
<title>Abstract Graphs and Abstract Paths for Knowledge Graph Completion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vivi</namePart>
<namePart type="family">Nastase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bhushan</namePart>
<namePart type="family">Kotnis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kilian</namePart>
<namePart type="family">Evang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soujanya</namePart>
<namePart type="family">Poria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Knowledge graphs, which provide numerous facts in a machine-friendly format, are incomplete. Information that we induce from such graphs – e.g. entity embeddings, relation representations or patterns – will be affected by the imbalance in the information captured in the graph – by biasing representations, or causing us to miss potential patterns. To partially compensate for this situation we describe a method for representing knowledge graphs that capture an intensional representation of the original extensional information. This representation is very compact, and it abstracts away from individual links, allowing us to find better path candidates, as shown by the results of link prediction using this information.</abstract>
<identifier type="citekey">nastase-kotnis-2019-abstract</identifier>
<identifier type="doi">10.18653/v1/S19-1016</identifier>
<location>
<url>https://aclanthology.org/S19-1016/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>147</start>
<end>157</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Abstract Graphs and Abstract Paths for Knowledge Graph Completion
%A Nastase, Vivi
%A Kotnis, Bhushan
%Y Mihalcea, Rada
%Y Shutova, Ekaterina
%Y Ku, Lun-Wei
%Y Evang, Kilian
%Y Poria, Soujanya
%S Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F nastase-kotnis-2019-abstract
%X Knowledge graphs, which provide numerous facts in a machine-friendly format, are incomplete. Information that we induce from such graphs – e.g. entity embeddings, relation representations or patterns – will be affected by the imbalance in the information captured in the graph – by biasing representations, or causing us to miss potential patterns. To partially compensate for this situation we describe a method for representing knowledge graphs that capture an intensional representation of the original extensional information. This representation is very compact, and it abstracts away from individual links, allowing us to find better path candidates, as shown by the results of link prediction using this information.
%R 10.18653/v1/S19-1016
%U https://aclanthology.org/S19-1016/
%U https://doi.org/10.18653/v1/S19-1016
%P 147-157
Markdown (Informal)
[Abstract Graphs and Abstract Paths for Knowledge Graph Completion](https://aclanthology.org/S19-1016/) (Nastase & Kotnis, *SEM 2019)
ACL