@inproceedings{sadeque-etal-2019-incivility,
    title = "Incivility Detection in Online Comments",
    author = "Sadeque, Farig  and
      Rains, Stephen  and
      Shmargad, Yotam  and
      Kenski, Kate  and
      Coe, Kevin  and
      Bethard, Steven",
    editor = "Mihalcea, Rada  and
      Shutova, Ekaterina  and
      Ku, Lun-Wei  and
      Evang, Kilian  and
      Poria, Soujanya",
    booktitle = "Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*{SEM} 2019)",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-1031/",
    doi = "10.18653/v1/S19-1031",
    pages = "283--291",
    abstract = "Incivility in public discourse has been a major concern in recent times as it can affect the quality and tenacity of the discourse negatively. In this paper, we present neural models that can learn to detect name-calling and vulgarity from a newspaper comment section. We show that in contrast to prior work on detecting toxic language, fine-grained incivilities like namecalling cannot be accurately detected by simple models like logistic regression. We apply the models trained on the newspaper comments data to detect uncivil comments in a Russian troll dataset, and find that despite the change of domain, the model makes accurate predictions."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sadeque-etal-2019-incivility">
    <titleInfo>
        <title>Incivility Detection in Online Comments</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Farig</namePart>
        <namePart type="family">Sadeque</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Stephen</namePart>
        <namePart type="family">Rains</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yotam</namePart>
        <namePart type="family">Shmargad</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Kate</namePart>
        <namePart type="family">Kenski</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Kevin</namePart>
        <namePart type="family">Coe</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Steven</namePart>
        <namePart type="family">Bethard</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Rada</namePart>
            <namePart type="family">Mihalcea</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Lun-Wei</namePart>
            <namePart type="family">Ku</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kilian</namePart>
            <namePart type="family">Evang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Soujanya</namePart>
            <namePart type="family">Poria</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Incivility in public discourse has been a major concern in recent times as it can affect the quality and tenacity of the discourse negatively. In this paper, we present neural models that can learn to detect name-calling and vulgarity from a newspaper comment section. We show that in contrast to prior work on detecting toxic language, fine-grained incivilities like namecalling cannot be accurately detected by simple models like logistic regression. We apply the models trained on the newspaper comments data to detect uncivil comments in a Russian troll dataset, and find that despite the change of domain, the model makes accurate predictions.</abstract>
    <identifier type="citekey">sadeque-etal-2019-incivility</identifier>
    <identifier type="doi">10.18653/v1/S19-1031</identifier>
    <location>
        <url>https://aclanthology.org/S19-1031/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>283</start>
            <end>291</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incivility Detection in Online Comments
%A Sadeque, Farig
%A Rains, Stephen
%A Shmargad, Yotam
%A Kenski, Kate
%A Coe, Kevin
%A Bethard, Steven
%Y Mihalcea, Rada
%Y Shutova, Ekaterina
%Y Ku, Lun-Wei
%Y Evang, Kilian
%Y Poria, Soujanya
%S Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F sadeque-etal-2019-incivility
%X Incivility in public discourse has been a major concern in recent times as it can affect the quality and tenacity of the discourse negatively. In this paper, we present neural models that can learn to detect name-calling and vulgarity from a newspaper comment section. We show that in contrast to prior work on detecting toxic language, fine-grained incivilities like namecalling cannot be accurately detected by simple models like logistic regression. We apply the models trained on the newspaper comments data to detect uncivil comments in a Russian troll dataset, and find that despite the change of domain, the model makes accurate predictions.
%R 10.18653/v1/S19-1031
%U https://aclanthology.org/S19-1031/
%U https://doi.org/10.18653/v1/S19-1031
%P 283-291
Markdown (Informal)
[Incivility Detection in Online Comments](https://aclanthology.org/S19-1031/) (Sadeque et al., *SEM 2019)
ACL
- Farig Sadeque, Stephen Rains, Yotam Shmargad, Kate Kenski, Kevin Coe, and Steven Bethard. 2019. Incivility Detection in Online Comments. In Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019), pages 283–291, Minneapolis, Minnesota. Association for Computational Linguistics.