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Abstract

Automatically generating animation from na-
tural language text finds application in a num-
ber of areas e.g. movie script writing, ins-
tructional videos, and public safety. However,
translating natural language text into anima-
tion is a challenging task. Existing text-to-
animation systems can handle only very sim-
ple sentences, which limits their applications.
In this paper, we develop a text-to-animation
system which is capable of handling complex
sentences. We achieve this by introducing a
text simplification step into the process. Buil-
ding on an existing animation generation sys-
tem for screenwriting, we create a robust NLP
pipeline to extract information from screen-
plays and map them to the system’s knowledge
base. We develop a set of linguistic transfor-
mation rules that simplify complex sentences.
Information extracted from the simplified sen-
tences is used to generate a rough storyboard
and video depicting the text. Our sentence sim-
plification module outperforms existing sys-
tems in terms of BLEU and SARI metrics.We
further evaluated our system via a user study:
68 % participants believe that our system gene-
rates reasonable animation from input screen-
plays.

1. Introduction

Generating animation from texts can be useful
in many contexts e.g. movie script writing (Ma and
Kevitt, 2006; Liu and Leung, 2006; Hanser et al.,
2010), instructional videos (Lu and Zhang, 2002),
and public safety (Johansson et al., 2004). Text-to-
animation systems can be particularly valuable for
screenwriting by enabling faster iteration, prototy-
ping and proof of concept for content creators.

In this paper, we propose a text-to-animation
generation system. Given an input text describing
a certain activity, the system generates a rough ani-
mation of the text. We are addressing a practical

setting, where we do not have any annotated data
for training a supervised end-to-end system. The
aim is not to generate a polished, final animation,
but a pre-visualization of the input text. The pur-
pose of the system is not to replace writers and
artists, but to make their work more efficient and
less tedious. We are aiming for a system which is
robust and could be deployed in a production en-
vironment.

Existing text-to-animation systems for screenw-
riting (§2) visualize stories by using a pipeline
of Natural Language Processing (NLP) techniques
for extracting information from texts and mapping
them to appropriate action units in the animation
engine. The NLP modules in these systems trans-
late the input text into predefined intermediate ac-
tion representations and the animation generation
engine produces simple animation from these re-
presentations.

Although these systems can generate anima-
tion from carefully handcrafted simple sentences,
translating real screenplays into coherent anima-
tion still remains a challenge. This can be attri-
buted to the limitations of the NLP modules used
with regard to handling complex sentences. In this
paper, we try to address the limitations of the
current text-to-animation systems. Main contribu-
tions of this paper are:

We propose a screenplay parsing architectu-
re which generalizes well on different screen-
play formats (§3.1).
We develop a rich set of linguistic rules to
reduce complex sentences into simpler ones
to facilitate information extraction (§3.2).
We develop a new NLP pipeline to generate
animation from actual screenplays (§3).

The potential applications of our contributions
are not restricted to just animating screenplays.
The techniques we develop are fairly general and
can be used in other applications as well e.g. in-
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Figure 1: System Architecture: Screenplays are first segmented into different functional blocks. Then, the descrip-
tive action sentences are simplified. Simplified sentences are used to generate animation.

formation extraction tasks.

2. Related Work

Translating texts into animation is not a trivial
task, given that neither the input sentences nor
the output animations have a fixed structure. Prior
work addresses this problem from different pers-
pectives (Hassani and Lee, 2016).

CONFUCIUS (Ma and Kevitt, 2006) is a sys-
tem that converts natural language to animation
using the FDG parser (Tapanainen and Järvinen,
1997) and WordNet (Miller, 1995). ScriptViz (Liu
and Leung, 2006) is another similar system, crea-
ted for screenwriting. It uses the Apple Pie par-
ser (Sekine, 1998) to parse input text and then re-
cognizes objects via an object-specific reasoner.
It is limited to sentences having conjunction bet-
ween two verbs. SceneMaker (Hanser et al., 2010)
adopts the same NLP techniques as proposed in
CONFUCIUS (Ma and Kevitt, 2006) followed by
a context reasoning module. Similar to previously
proposed systems, we also use dependency par-
sing followed by linguistic reduction (§3.2).

Recent advances in deep learning have pushed
the state of the art results on different NLP tasks
(Honnibal and Johnson, 2015; Wolf et al., 2018;
He et al., 2017). We use pre-trained models for
dependency parsing, coreference resolution and
SRL to build a complete NLP pipeline to crea-
te intermediate action representations. For the ac-
tion representation (§3.4), we use a key-value pair
structure inspired by the PAR architecture (Badler
et al., 2000), which is a knowledge base of repre-
sentations for actions performed by virtual agents.

Our work comes close to the work done in the
area of Open Information Extraction (IE) (Niklaus
et al., 2018). In particular, to extract information,
Clause-Based Open IE systems (Del Corro and
Gemulla, 2013; Angeli et al., 2015; Schmidek and
Barbosa, 2014) reduce a complex sentence into
simpler sentences using linguistic patterns. Howe-
ver, the techniques developed for these systems do
not generalize well to screenplay texts, as these
systems have been developed using well-formed
and factual texts like Wikipedia, Penn TreeBank,
etc. An initial investigation with the popular Open
IE system OLLIE (Open Language Learning for
Information Extraction) (Mausam et al., 2012) did
not yield good results on our corpus.

Previous work related to information extraction
for narrative technologies includes the CARDI-
NAL system (Marti et al., 2018; Sanghrajka et al.,
2018), as well as the conversational agent PICA
(Falk et al., 2018). They focus on querying know-
ledge from stories. The CARDINAL system also
generates animations from input texts. However,
neither of the tools can handle complex sentences.
We build on the CARDINAL system. We deve-
lop a new NLP module to support complex sen-
tences and leverage the animation engine of CAR-
DINAL.

Recently, a number of end-to-end image ge-
neration systems have been proposed (Mansimov
et al., 2015; Reed et al., 2016). But these sys-
tems do not synthesize satisfactory images yet,
and are not suitable for our application. It is hoped
that the techniques proposed in this paper could
be used for automatically generating labelled da-
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ta (e.g. (text,video) pairs) for training end-to-end
text-to-animation systems.

3. Text-to-Animation System

We adopt a modular approach for generating
animations from screenplays. The general over-
view of our approach is presented in Figure 1. The
system is divided into three modules:

Script Parsing Module: Given an input
screenplay text, this module automatically
extracts the relevant text for generating the
animation (§3.1).
NLP Module: It processes the extracted text
to get relevant information. This has two sub-
modules:
• Text Simplification Module: It simpli-

fies complex sentences using a set of lin-
guistic rules (§3.2).
• Information Extraction Module: It ex-

tracts information from the simplified
sentences into pre-defined action repre-
sentations (§3.4).

Animation Generation Module: It genera-
tes animation based on action representations
(§3.5).

3.1. Script Parsing Module
Typically, screenplays or movie scripts or

scripts (we use the terms interchangeably), are
made of several scenes, each of which corresponds
to a series of consecutive motion shots. Each sce-
ne contains several functional components1: Hea-
dings (time and location), Descriptions (scene des-
cription, character actions), Character Cues (cha-
racter name before dialog), Dialogs (conversation
content), Slug Lines (actions inserted into con-
tinuous dialog) and Transitions (camera move-
ment). In many scripts, these components are ea-
sily identifiable by indentation, capitalization and
keywords. We call these scripts well-formatted,
and the remaining ones ill-formatted. We want to
segment the screenplays into components and are
mainly interested in the Descriptions component
for animation generation.
Well-formatted Scripts: We initially tried
ScreenPy (Winer and Young, 2017) to annotate
the well-formatted scripts with the component
labels. However, ScreenPy did not perform well
on our data. We developed our own model, based
on Finite State Machines (FSM), for parsing

1https://www.storysense.com/format.htm

Algorithm 1 Syntactic Simplification Procedure
1: procedure SYNTACTIC SIMPLIFICATION(sent, temp)
2: Q← empty queue
3: HS← empty integer hash set
4: RES← empty list
5: Q.push(sent) . push input sentence to queue
6: while Q 6= Empty do
7: str← Q.pop()
8: if hash(str) ∈ HS then
9: RES.append(str) . have seen this sentence
10: continue
11: HS.add(str) . mark current sentence as already seen
12: transform← False
13: for a in analyzers do
14: if !transform & a.identify(str) then
15: transform← True
16: simplified = a.transform(str)
17: correct verb tense(simplified)
18: Q.push(simplified)
19: if transform 6= True then
20: RES.append(str)
21: return RES

scripts (for details refer to Appendix A). Due
to space limitations, we do not describe the
FSM model; the key idea is that the model uses
hand-crafted transition rules to segment the input
screenplay and generates (paragraph, component
name) pairs.
Ill-formatted Scripts: Taking all the (paragraph,
component name) pairs generated by the FSM as
ground truth, an SVM model is trained to segment
ill-formatted screenplays with inconsistent inden-
tations. For extracting features, each paragraph is
encoded into a fix-sized vector using a pre-trained
Universal Sentence Encoder. The SVM is trained
and tested on a 9:1 train-test data split. The re-
sult shows an accuracy of 92.72 % on the test set,
which is good for our purposes, as we are interes-
ted mainly in the Descriptions component.
Coreference Resolution: Screenplays contain a
number of ambiguous entity mentions (e.g. pro-
nouns). In order to link mentions of an entity, an
accurate coreference resolution system is requi-
red. The extracted Descriptions components are
processed with the NeuralCoref2 system. Given
the text, it resolves mentions (typically pronouns)
to the entity they refer to in the text. To facili-
tate entity resolution, we prepend each Descrip-
tion component with the Character Cues compo-
nent which appears before it in the screenplay (e.g.
[character]MARTHA: [dialog]“I knew it!” [des-
cription]She then jumps triumphantly→ MART-
HA. She then jumps triumphantly).

3.2. Text Simplification Module
In a typical text-to-animation system, one of the

main tasks is to process the input text to extract
2github.com/huggingface/neuralcoref

https://www.storysense.com/format.htm
github.com/huggingface/neuralcoref
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Syntactic Structure Identify procedure Transform procedure
Coordination search if cc and conj in dependency tree cut cc and conj link. If conj is verb, mark it as new root; else

replace it with its sibling node.
Pre-Correlative Conjugation locates position of keywords: “either”,

“both”,“neither”
removed the located word from dependency tree

Appositive Clause find appos token and its head (none) glue appositive noun phrase with “to be”
Relative Clause find relcl token and its head cut appos link, then traverse from root. Then, if no “wh” word

present, put head part after anchor part; else, we divide them into
5 subcases (Table 2)

Adverbial Clause Modifier find advcl token and its head. Also conjuncts of
head token

cut advcl edge. If advcl token does not have subject, add subject
of root as advcl’s most-left child and remove prep and mark token.
Then traverse from both root and advcl token

Inverted Clausal Subject attr token has to be the child of head of csubj
token

change position of actual verb and subject

Clausal Complement find ccomp token in dependency tree cut ccomp link, add subject to subordinate clause if necessary
Passive Voice check presence of nsubjpass or csubjpass optio-

nally for auxpass and agent
cut auxpass link if any. Cut nsubjpass or csubjpass link. Prepend
subject token to verb token’s right children. Finally append suita-
ble subject.

Open Clause Complement find xcomp verb token adn actual verb token if aux token presents, cut aux link, then replace xcomp-verb in
subject’s children with actual-verb, traverse from actual-verb; el-
se, cut xcomp link, traverse from xcomp-verb

Adjective Clause find acl verb token and its head cut acl link. Link subject node with it. Traverser from acl node

Table 1: Linguistic rules for text simplification module

the relevant information about actions (typically
verbs) and participants (typically subject/object of
the verb), which is subsequently used for genera-
ting animation. This works well for simple sen-
tences having a single verb with one subject and
one (optional) object. However, the sentences in a
screenplay are complicated and sometimes infor-
mal. In this work, a sentence is said to be compli-
cated if it deviates from easily extractable and sim-
ple subject-verb-object (and its permutations) syn-
tactic structures and possibly has multiple actions
mentioned within the same sentence with syntactic
interactions between them. By syntactic structure
we refer to the dependency graph of the sentence.

In the case of screenplays, the challenge is to
process such complicated texts. We take the text
simplification approach, i.e. the system first sim-
plifies a complicated sentence and then extracts
the relevant information. Simplification reduces a
complicated sentence into multiple simpler sen-
tences, each having a single action along with its
participants, making it straightforward to extract
necessary information.

Recently, end-to-end Neural Text Simplifica-
tion (NTS) systems (Nisioi et al., 2017; Saggion,
2017) have shown reasonable accuracy. However,
these systems have been trained on factual data
such as Wikipedia and do not generalize well to
screenplay texts. Our experiments with such a pre-
trained neural text simplification system did not
yield good results (§5.1). Moreover, in the context
of text-to-animation, there is no standard labeled
corpus to train an end-to-end system.

There has been work on text simplification
using linguistic rules-based approaches. For exam-

ple, (Siddharthan, 2011) propose a set of rules
to manipulate sentence structure to output simpli-
fied sentences using syntactic dependency parsing.
Similarly, the YATS system (Ferrés et al., 2016)
implements a set of rules in the JAPE language
(Cunningham et al., 2000) to address six syntac-
tic structures: Passive Constructions, Appositive
Phrases, Relative Clauses, Coordinated Clau-
ses, Correlated Clauses and Adverbial Clauses.
Most of the rules focus on case and tense correc-
tion, with only 1-2 rules for sentence splitting. We
take inspiration from the YATS system, and our
system incorporates modules to identify and trans-
form sentence structures into simpler ones using a
broader set of rules.

In our system, each syntactic structure is hand-
led by an Analyzer, which contains two proces-
ses: Identify and Transform. The Identify process
takes in a sentence and determines if it contains
a particular syntactic structure. Subsequently, the
Transform process focuses on the first occurrence
of the identified syntactic structure and then splits
and assembles the sentence into simpler sentences.
Both Identify and Transform use Part-of-Speech
(POS) tagging and dependency parsing (Honni-
bal and Montani, 2017) modules implemented in
spaCy 2.03

The simplification algorithm (Algorithm 1)
starts with an input sentence and recursively pro-
cesses it until no further simplification is possi-
ble. It uses a queue to manage intermediate simpli-
fied sentences, and runs in a loop until the queue
is empty. For each sentence, the system applies
each syntactic analyzer to Identify the correspon-

3https://spacy.io

https://spacy.io
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Type Example Input Sentence System Output Sentence 1 System Output Sentence 2
Coordination She LAUGHS, and[cc] gives[conj] Kevin a kiss. She laughs. She gives Kevin a kiss.
Pre-Correlative It’s followed by another squad car, both[preconj]

with sirens blaring.
It’s followed by another squad car,
with sirens blaring.

–

Appositive Kevin is reading a book the Bible[appos] Kevin reads a book The book is the Bible.
Relative-dobj She pulls out a letter which[dobj] she

hands[relcl] to Keven
Shee pulls out a letter She hands a lettre to Kevin.

Relative-pobj A reef encloses the cove where[pobj] he ca-
me[relcl] from.

A reef encloses the cove he comes from the cove.

Relative-nsubj Frank gestures to the SALESMAN,
who[nsubj]’s waiting[relcl] on a woman

the SALESMAN waits on a woman. Frank gestures to the SALESMAN.

Relative-advmod Chuck is in the stage of exposure whe-
re[advmod] the personality splits[relcl]

Chuck is in the stage of exposure the personality splits at exposure.

Relative-poss The girl, whose[poss] name is[relcl] Helga, co-
wers.

The girl cowers The girl ’s name is Helga

Relative-omit Kim is the sexpot Peter saw[relcl] in Washington
Square Park

Peter sees Kim in Washington Square
Park.

Kim is the sexpot.

Adverbial Jim panics as[advcl] his mom reacts, shocked. Jim panics, shocked. Jim’s mom reacts.
Adverbial-remove Suddenly there’s a KNOCK at the door, im-

mediately after[prep] which JIM’S MOM en-
ters[advcl].

Suddenly there ’s a KNOCK at the
door.

Immediately JIM ’S MOM enters.

Inverted Cl. Subject Running[csubj] towards Oz is Steve Stifler Steve Stifler runs towards Oz. –
Clausal Component The thing is, it actually sounds[ccomp] really

good.
The thing is.(will be eliminated by the
filter)

It actually sounds really good.

Passive Voice They[nsubjpass] are suddenly illuminated by the
glare of headlights.

Suddenly the glare of headlights illu-
minateds them.

–

Open Clausal The sophomore comes running[xcomp] through
the kitchen.

The sophomore runs through the kit-
chen.

The sophomore comes.

Adjective Stifler has a toothbrush hanging[acl] from his
mouth.

A toothbrush hangs from Stifler’s
mouth.

Stifler has a toothbrush.

Table 2: Syntactic simplification rules applied on example sentences.

ding syntactic structure in the sentence (line 14).
If the result is positive, the sentence is processed
by the Transform function to convert it to simple
sentences (line 16). Each of the output sentences is
pushed by the controller into the queue (line 19).
The process is repeated with each of the Identify
analyzers (line 13). If none of the analyzers can
be applied, the sentence is assumed to be simple
and it is pushed into the result list (line 21). We
summarize linguistic rules in Table 1 and exam-
ples are given in Table 2. Next, we describe the
coordination linguistic rules. For details regarding
other rules, please refer to Appendix B.

Coordination: Coordination is used for entities
having the same syntactic relation with the head
and serving the same functional role (e.g. subj,
obj, etc.). It is the most important component in
our simplification system. The parser tags word
units such as “and” and “as well as” with the de-
pendency label cc, and the conjugated words as
conj. Our system deals with coordination based on
the dependency tag of the conjugated word.

In the case of coordination, the Identify function
simply returns whether cc or conj is in the depen-
dency graph of the input sentence. The Transform
function manipulates the graph structure based on
the dependency tags of the conjugated words as
shown in Figure 2. If the conjugated word is a
verb, then we mark it as another root of the sen-
tence. Cutting cc and conj edges in the graph and

traversing from this new root results in a new sen-
tence parallel to the original one. In other cases,
such as the conjugation between nouns, we simply
replace the noun phrases with their siblings and
traverse from root again.

3.3. Lexical Simplification

In order to generate animation, actions and par-
ticipants extracted from simplified sentences are
mapped to existing actions and objects in the ani-
mation engine. Due to practical reasons, it is not
possible to create a library of animations for all
possible actions in the world. We limit our library
to a predefined list of 52 actions/animations, ex-
panded to 92 by a dictionary of synonyms (§3.5).
We also have a small library of pre-uploaded ob-
jects (such as “campfire”, “truck” and others).

To animate unseen actions not in our list, we
use a word2vec-based similarity function to find
the nearest action in the list. Moreover, we use
WordNet (Miller, 1995) to exclude antonyms. This
helps to map non-list actions (such as “squint at”)
to the similar action in the list (e.g. “look”). If we
fail to find a match, we check for a mapping while
including the verb’s preposition or syntactic ob-
ject. We also use WordNet to obtain hypernyms
for further checks, when the similarity function
fails to find a close-enough animation. Correspon-
dingly, for objects, we use the same similarity fun-
ction and WordNet’s holonyms.
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Figure 2: Transform in an example coordination sentence. Firstly the dependency links of cc and conj are cut. Then
we look for a noun in the left direct children of the original root LAUGHS and link the new root gives with it.
In-order traverse from the original root and the new root will result in simplified sentences as shown in Table 2.

Our list of actions and objects is not exhausti-
ve. Currently, we do not cover actions which may
not be visual. For out of list actions, we give the
user a warning that the action cannot be animated.
Nevertheless, this is a work in progress and we are
working on including more animations for actions
and objects in our knowledge base.

3.4. Action Representation Field (ARF):
Information Extraction

For each of the simplified sentences, informa-
tion is extracted and populated into a predefined
key-value pair structure. We will refer to the keys
of this structure as Action Representation Fields
(ARFs). These are similar to entities and rela-
tions in Knowledge Bases. ARFs include: owner,
target, prop, action, origin action, manner, mo-
difier location, modifier direction, start-time, du-
ration, speed, translation, rotation, emotion, par-
tial start time (for more details see Appendix C).
This structure is inspired by the PAR (Badler et al.,
2000) architecture, but adapted to our needs.

To extract the ARFs from the simplified sen-
tences, we use a Semantic Role Labelling (SRL)
model in combination with some heuristics, for
example creating word lists for duration, speed,
translation, rotation, emotion. We use a pre-
trained Semantic Role Labelling model4 based on
a Bi-directional LSTM network (He et al., 2017)
with pre-trained ELMo embeddings (Peters et al.,
2018). We map information from each sentence to
the knowledge base of animations and objects.

3.5. Animation Generation
We use the animation pipeline of the CAR-

DINAL system. We plug in our NLP module in
4AllenNLP SRL model: https://github.com/

allenai/allennlp

CARDINAL to generate animation. CARDINAL
creates pre-visualizations of the text, both in story-
board form and animation. A storyboard is a se-
ries of pictures that demonstrates the sequence of
scenes from a script. The animation is a 3-D ani-
mated video that approximately depicts the script.
CARDINAL uses the Unreal game engine (Ga-
mes, 2007) for generating pre-visualizations. It
has a knowledge base of pre-baked animations (52
animations, plus a dictionary of synonyms, resul-
ting in 92) and pre-uploaded objects (e.g. “camp-
fire”, “tent”). It also has 3-D models which can be
used to create characters.

4. Text-to-Animation Corpus

We initially used a corpus of Descriptions com-
ponents from ScreenPy (Winer and Young, 2017),
in order to study linguistic patterns in the mo-
vie script domain. Specifically, we used the “hea-
ding” and “transition” fields from ScreenPy’s pu-
blished JSON output on 1068 movie scripts scra-
ped from IMSDb. We also scraped screenplays
from SimplyScripts and ScriptORama5. After se-
parating screenplays into well-formatted and ill-
formatted, Descriptions components were extrac-
ted using our model (§3.1). This gave a corpus of
Descriptions blocks from 996 screenplays.

The corpus contains a total of 525,708 Descrip-
tions components. The Descriptions components
contain a total of 1,402,864 sentences. Out of all
the Descriptions components, 49.45 % (259,973)
contain at least one verb which is in the anima-
tion list (henceforth called “action verbs”). Des-
criptions components having at least one action
verb have in total 920,817 sentences. Out of the-

5http://www.simplyscripts.com and http:
//www.script-o-rama.com

https://github.com/allenai/allennlp
https://github.com/allenai/allennlp
http://www.simplyscripts.com
http://www.script-o-rama.com
http://www.script-o-rama.com
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Carl touches Ellie’s shoulder as the doctor explains. Ellie drops her head in her hands.
System output Annotator I Annotator II BLEU2( %)
Carl touches Ellie ’s shoulder carl touches ellie’s shoulder carl touches ellie’s shoulder. 38.73
the doctor explains the doctor explains the doctor is talking. 100
Ellie drops Ellie head in Ellie
hands

ellie drops her head in her hands ellie drops her head in her
hands.

48.79

Table 3: Differences between system output and annotator responses

BLEU SARI
NTS-w2v 61.45 36.04

YATS 58.83 48.75
Our System 67.68 50.65

Table 4: Results on syntactic simplification

se, 42.2 % (388,597) of the sentences contain ac-
tion verbs. In the corpus, the average length of a
sentence is 12 words.

5. Evaluation and Analysis

There are no standard corpora for text-to-
animation generation. It is also not clear how
should such systems be evaluated and what should
be the most appropriate evaluation metric. Nevert-
heless, it is important to assess how our system is
performing. We evaluate our system using two ty-
pes of evaluation: Intrinsic and Extrinsic. Intrinsic
evaluation is for evaluating the NLP pipeline of
our system using the BLEU metric. Extrinsic eva-
luation is an end-to-end qualitative evaluation of
our text-to-animation generation system, done via
a user study.

5.1. Intrinsic Evaluation

To evaluate the performance of our proposed
NLP pipeline, 500 Descriptions components from
the test set were randomly selected. Three anno-
tators manually translated these 500 Descriptions
components into simplified sentences and extrac-
ted all the necessary ARFs from the simplified
sentences. This is a time intensive process and
took around two months. 30 % of the Descriptions
blocks contain verbs not in the list of 92 animation
verbs. There are approximately 1000 sentences in
the test set, with average length of 12 words. Each
Descriptions component is also annotated by the
three annotators for the ARFs.

Taking inspiration from the text simplification
community (Nisioi et al., 2017; Saggion, 2017),
we use the BLEU score (Papineni et al., 2002) for
evaluating our simplification and information ex-
traction modules. For each simplified sentence si

we have 3 corresponding references r1i , r
2
i and r3i .

We also evaluate using the SARI (Xu et al., 2016)
score to evaluate our text simplification module.

5.1.1. Sentence Simplification
Each action block a is reduced to a set of

simple sentences Sa = {s1, s2, ....sna}. And
for the same action block a, each annotator t,
t ∈ {1, 2, 3} produces a set of simplified sen-
tences Rt

a = {rt1, rt2, ...rtmt
a
}. Since the simpli-

fication rules in our system may not maintain
the original ordering of verbs, we do not ha-
ve sentence level alignment between elements in
Sa and Rt

a. For example, action block a = He
laughs after he jumps into the water is reduced
by our system into two simplified sentences Sa =
{s1 = He jumps into the water, s2 = He laughs}
by the temporal heuristics, while annotator3
gives us R3

a = {r31 = He laughs, r32 =
He jumps into the water}. In such cases, sequen-
tially matching si to rj will result in a wrong (hy-
pothesis, reference) alignment which is (s1, r31)
and (s2, r32).

To address this problem, for each hypothesis
si ∈ Sa, we take the corresponding reference
rti ∈ Rt

a as the one with the least Levenshtein Dis-
tance (Navarro, 2001) to si, i.e,

rti = argmin
rtj

lev dist(si, r
t
j), ∀j ∈ {1, ...,mt

a}

As per this alignment, in the above example, we
will have correct alignments (s1, r32) and (s2, r31).
Thus, for each simplified sentence si we have 3 co-
rresponding references r1i , r2i and r3i . The aligned
sentences are used to calculate corpus level BLEU
score6 and SARI score7.

The evaluation results for text simplification
are summarized in Table 4. We compare against
YATS (Ferrés et al., 2016) and neural end-to-end
text simplification system NTS-w2v (Nisioi et al.,

6We used NLTK’s API with default parameters: http:
//www.nltk.org/api/nltk.translate.html#
nltk.translate.bleu_score.corpus_bleu

7Implementation available at https://github.
com/cocoxu/simplification/

http://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.corpus_bleu
http://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.corpus_bleu
http://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.corpus_bleu
https://github.com/cocoxu/simplification/
https://github.com/cocoxu/simplification/
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Field BLEU1 Field BLEU1

owner 56.16 org action 80.92
target 41.85 manner 84.84
prop 28.98 location 71.89
action 70.46 direction 70.83
emotion 57.89

Table 5: Results on textual ARFs ( %)

Field P R F1
s time 86.49 68.63 76.53
rot. 82.04 81.16 81.60
duration 94.72 73.92 83.04
transl. 75.49 86.47 80.61
speed 94.41 79.50 86.32

Table 6: Result on Non-textual ARFs( %)

2017). YATS is also a rule-based text simplifica-
tion system. As shown in Table 4, our system per-
forms better than YATS on both the metrics, in-
dicative of the limitations of the YATS system.
A manual examination of the results also showed
the same trend. However, the key point to note is
that we are not aiming for text simplification in
the conventional sense. Existing text simplifica-
tion systems tend to summarize text and discard
some of the information. Our aim is to break a
complex sentence into simpler ones while preser-
ving the information.

An example of a Descriptions component with
BLEU2 scores is given in Table 3. In the first sim-
plified sentence, the space between Ellie and ’s
causes the drop in the score. But it gives exactly
the same answer as both annotators. In the second
sentence, the system output is the same as the an-
notator I’s answer, so the BLEU2 score is 1. In
the last case, the score is low, as annotators pos-
sibly failed to replace her with the actual Charac-
ter Cue Ellie. Qualitative examination reveals, in
general, that our system gives a reasonable result
for the syntactic simplification module. As exem-
plified, BLEU is not the perfect metric to evaluate
our system, and therefore in the future we plan to
explore other metrics.

5.1.2. ARF Evaluation

We also evaluate the system’s output for action
representation fields against gold annotations. In
our case, some of the fields can have multiple (2
or 3) words such as owner, target, prop, action,
origin action, manner, location and direction. We
use BLEU1 as the evaluation metric to measure
the BOW similarity between system output and
ground truth references. The results are shown in
Table 5.

In identifying owner, target and prop, the sys-
tem tends to use a fixed long mention, while an-
notators prefer short mentions for the same cha-
racter/object. The score of prop is relatively lower
than all other fields, which is caused by a systema-
tic SRL mapping error. The relatively high accu-

racy on the action field indicates the consistency
between system output and annotator answers.

Annotation on the emotion ARF is rather sub-
jective. Responses on the this field are biased and
noisy. The BLEU1 score on this is relatively low.
For the other non-textual ARFs, we use precision
and recall to measure the system’s behavior. Re-
sults are shown in Table 6. These fields are sub-
jective: annotators tend to give different responses
for the same input sentence.

rotation and translation have Boolean values.
Annotators agree on these two fields in most of
the sentences. The system, on the other hand, fails
to identify actions involving rotation. For exam-
ple, in the sentence “Carl closes CARL ’s door
sharply” all four annotators think that this sen-
tence involves rotation, which is not found by the
system. This is due to the specificity of rules on
identifying these two fields.

speed, duration and start time have high preci-
sion and low recall. This indicates the inconsis-
tency in annotators’ answers. For example, in the
sentence “Woody runs around to the back of the
pizza truck”, two annotators give 2 seconds and
another gives 1 second in duration. These fields
are subjective and need the opinion of the script
author or the director. In the future, we plan to in-
volve script editors in the evaluation process.

5.2. Extrinsic Evaluation

We conducted a user study to evaluate the per-
formance of the system qualitatively. The focus of
the study was to evaluate (from the end user’s pers-
pective) the performance of the NLP component
w.r.t. generating reasonable animations.

We developed a questionnaire consisting of 20
sentence-animation video pairs. The animations
were generated by our system. The questionnai-
re was filled by 22 participants. On an average it
took around 25 minutes for a user to complete the
study.

We asked users to evaluate, on a five-point Li-
kert scale (Likert, 1932), if the video shown was
a reasonable animation for the text, how much of
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Strongly Di-
sagree

Disagree Neutral Agree Strongly
Agree

The animation shown in the video is a reasona-
ble visualization of the text.

13.64 % 18.18 % 22.95 % 28.64 % 16.59 %

All the actions mentioned in the text are shown
in the video.

15.68 % 20 % 22.96 % 20.68 % 20.68 %

All the actions shown in the video are mentio-
ned in the text.

12.96 % 11.14 % 16.36 % 23.18 % 36.36 %

Table 7: User Study Results

the text information was depicted in the video and
how much of the information in the video was pre-
sent in the text (Table 7). The 68.18 % of the parti-
cipants rated the overall pre-visualization as neu-
tral or above. The rating was 64.32 % (neutral or
above) for the conservation of textual information
in the video, which is reasonable, given limitations
of the system that are not related to the NLP com-
ponent. For the last question, 75.90 % (neutral or
above) agreed that the video did not have extra in-
formation. In general, there seemed to be reasona-
ble consensus in the responses. Besides the limita-
tions of our system, disagreement can be attributed
to the ambiguity and subjectivity of the task.

We also asked the participants to describe quali-
tatively what textual information, if any, was mis-
sing from the videos. Most of the missing infor-
mation was due to limitations of the overall system
rather than the NLP component: facial expression
information was not depicted because the charac-
ter 3-D models are deliberately designed without
faces, so that animators can draw on them. Infor-
mation was also missing in the videos if it refe-
rred to objects or actions that do not have a close
enough match in the object list or animations list.
Furthermore, the animation component only sup-
ports animations referring to a character or object
as a whole, not parts, (e.g. “Ben raises his head” is
not supported).

However, there were some cases where the NLP
component can be improved. For example, lexical
simplification failed to map the verb “watches” to
the similar animation “look”. In one case, syntac-
tic simplification created only two simplified sen-
tences for a verb which had three subjects in the
original sentence. In a few cases, lexical simpli-
fication successfully mapped to the most similar
animation (e.g.“argue” to “talk”) but the partici-
pants were not satisfied - they were expecting a
more exact animation. We plan to address these
shortcomings in future work.

6. Conclusion and Future Work
In this paper, we proposed a new text-to-

animation system. The system uses linguistic text
simplification techniques to map screenplay text
to animation. Evaluating such systems is a cha-
llenge. Nevertheless, intrinsic and extrinsic eva-
luations show reasonable performance of the sys-
tem. The proposed system is not perfect, for exam-
ple, the current system does not take into account
the discourse information that links the actions im-
plied in the text, as currently the system only pro-
cesses sentences independently. In the future, we
would like to leverage discourse information by
considering the sequence of actions which are des-
cribed in the text (Modi and Titov, 2014; Modi,
2016). This would also help to resolve ambiguity
in text with regard to actions (Modi et al., 2017;
Modi, 2017). Moreover, our system can be used
for generating training data which could be used
for training an end-to-end neural system.
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Appendix A

Figure 3: FSM of Well-formatted Screenplay Parser. Numbers of link are Rules and ∼ means logical NOT

ID Rule Summary
1 If input is uppercase and contains heading words such as ‘INT’, ‘EXT’. etc, return True, otherwise

False
2 If input is uppercase and contains character words such as ‘CONT.’, ‘(O.S)’, or if #indentation >

most frequent #indentation, return True. Otherwise False
3 If input starts with ‘(′ , return True, otherwise False
4 If input ends with ‘)′, return True, otherwise False
5 If |#lastindents−#currentindents| < 3, return True, otherwise False
6 If the input is uppercase and contains transition words such as ‘DISSOLVE’, ‘CUT TO’. etc, return

True, otherwise False
7 If the input equals to ‘THE END’, return True. Otherwise False.

Table 8: FSM Transition Rules
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COMPLEX: Another parent , Mike Munson , sits on the bench with a tablet and uses an app to track and
analyze the team ’s shots.
NSELSTM-B: Another parent, Mike Munson, sits on the bench with a tablet and uses an app to track.
YATS: Another parent sits on the bench with a tablet and uses an app to track and examines the team’ s
shots. This parent is Mike Munson.
OURS: Another parent is Mike Munson. Another parent sits on the bench with a tablet. Another parent
uses an app.
COMPLEX: Stowell believes that even documents about Lincoln’s death will give people a better un-
derstanding of the man who was assassinated 150 years ago this April.
NSELSTM-B: Stowell believes that the discovery about Lincoln’s death will give people a better unders-
tanding of the man.
YATS: Stowell believes that even documents about Lincoln’ s death will give people a better reason of
the man. This man was assassinated 150 years ago this April.
OURS: Stowell believes. Even documents about Lincoln ’s death give people a better understanding of
the man. Somebody assassinates the man 150 years ago this April.

Table 9: Example Model Outputs
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Appendix B: Algorithms

Algorithm 2 Identify Adverbial Clause
1: procedure ADVERBIAL CLAUSE IDENTIFY PROCEDURE(sent) . The input sentence
2: find tokens in sents with dependency tag ROOT and ADVCL (we call it advcl)
3: if no ADVCL token in sents then
4: return False
5: find father token of advcl as father
6: if father is not a VERB then
7: we make it as a VERB . We correct POS error here
8: find conjunction tokens of father as conjuncts
9: if NOUN in advcl’s left subtree then
10: subject← this NOUN
11: else
12: subject← NOUN in father’s left subtree
13: return True

Algorithm 3 Transform Adverbial Clause
1: procedure ADVERBIAL CLAUSE TRANSFORM PROCEDURE(sent) . The input sentence
2: cut edge between root and advcl token . remove advcl token from root’s children
3: if advcl verb does not have its own subject then
4: add subject as advcl’s most left direct child
5: remove PREP and MARK token in advcl’s children, modify temporal id accordingly
6: str1← traverse a string(root)
7: str2← correct tense(traverse a string(advcl))
8: return [str1, str2]

Algorithm 4 Identify() in Relative Clause Analyzer
1: procedure RELATIVE CLAUSE IDENTIFY PROCEDURE(sent) . The input sentence.
2: if no RELCL token in sent then
3: return False
4: anchor← RELCL token
5: head← anchor’s head token
6: wg← NULL
7: for token t in anchor’s children do
8: if t.tag ∈ [WDT, WP, WP$, WRB] then
9: wh← t
10: return True

Algorithm 5 Transform() in Relative Clause Analyzer
1: procedure RELATIVE CLAUSE TRANSFORM PROCEDURE(root, anchor, head, wh) . Root of dependency tree, the recl anchor token, its head, and

wh-word
2: cut relcl edge between head and anchor
3: str1← traverse a string(root)
4: if wh = NULL then . No Wh-word in the sentence, concatenate
5: str2←traverse a string(anchor) + traverse a string(head)
6: else
7: wh-dep← dependency tag of wh
8: wh-head← head of wh
9: remove wh in anchor’s children
10: if wh-dep= DOBJ then . wh is verb
11: str2← traverse a string(wh-head) + traverse a string(anchor)
12: else if wh-dep= POBJ then . wh-head is preposition
13: put head after wh-head in anchor’s children
14: str2← traverse a string(anchor)
15: else if wh-dep∈ [NSUBJ, NSUBJPASS] then . wh is subject
16: str2← traverse a string(wh-head) + traverse a string(anchor)
17: else if wh-dep= ADVMOD then . wh is time or location
18: prep← ‘at’
19: str2← traverse a string(anchor) + prep+ traverse a string(wh-head)
20: else if wh-dep= POSS then . wh = whose
21: str2← traverse a string(wh-head) + be verb+ traverse a string(anchor)
22: correct verb tense in str1 and str2
23: return [str1, str2]
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Algorithm 6 Transform() in Coordination Analyzer
1: procedure COORDINATION TRANSFORM PROCEDURE(sents) . Input sentence
2: results← empty list
3: find root of dependency tree of sents
4: find first cc(if any) and conj token in denpendency tree and their head token main
5: embed all conjugate words of main in a list conjus
6: cut conj edge between main and cc and conj
7: if no object for main then
8: try find object in conj’s right children
9: str1← traverse a string(root)
10: results.append(str1)
11: for conj in conjs do
12: type← get conj type(main, conj)
13: if type=VERB&VERB then
14: correct part-of-speech tag if necessary . spaCy tends to tag verb as noun
15: if conj has its own subject then
16: new-root← conj
17: else
18: if main=root then
19: new-root← conj
20: else
21: replace main with conj in root’s children
22: new-root← root
23: else . Other cases such as NOUN&NOUN, AD*&AD*, apply same rule
24: main-head← head of main
25: replace main with conj in main-head’s children
26: new-root← root
27: str2← traverse a string(new-root)
28: results.append(str2)
29: return results

Algorithm 7 Identify() in Passive Analyzer
1: procedure PASSIVE VOICE IDENTIFY PROCEDURE(sents) . Input sentence
2: is-passive← False
3: for token t in sents do
4: if t.dep ∈ [CSUBJPASS, NSUBJPASS] then
5: subj-token← t
6: verb-token← t.head
7: is-passive← True
8: if t.dep ∈ [AUXPASS] and t.head = verb-token then
9: auxpass-token← t
10: if t.dep ∈ [AGENT] and t.text = ‘by’ then
11: by-token← t
12: return is-passive

Algorithm 8 Transform() in Passive Analyzer
1: procedure PASSIVE VOICE TRANSFORM PROCEDURE(sents) . Input sentence
2: if auxpass-token 6= NULL then
3: cut auxpass edge
4: cut nsubjpass or csubj edge
5: prepend subject-token to verb-token’s right children
6: if by-token 6= NULL then
7: cut by-agent edge
8: add by-token’s right children to verb-token’s left children
9: else
10: add ‘Somebody’ to verb-token’s left children
11: correct verb tense for verb-token
12: return traverse a string(root-token)

Algorithm 9 Transform() in Appositive Clause Analyzer
1: procedure APPOSITIVE CLAUSE TRANSFORM PROCEDURE(anchor, head) . The APPOS token and its head token.
2: cut edge between anchor and head token . remove anchor from head’s right children
3: str1← traverse a string(root token of input sentence)
4: str2← traverse a string(head) + be verb + traverse a string(anchor)
5: correct verb tense in str1 and str2
6: return [str1, str2]

Algorithm 10 Identify() in Inverted Clausal Subject Analyzer
1: procedure INVERTED CLAUSAL SUBJECT IDENTIFY PROCEDURE(sents) . Input sentence
2: for Token t in sents do
3: if t.dep = CSUBJ and t.tag ∈ [VBN, VBG] and t.head.lemma=‘be’ then
4: attr← token with dependency label attr in t.head’s right children
5: if attr = NULL then . attr is the actual subject of the sentence
6: return False . Make sure this is an inverted sentence
7: actual-verb← t
8: be-verb← t.head
9: return True
10: return False
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Algorithm 11 Transform() in Inverted Clausal Subject Analyzer
1: procedure INVERTED CLAUSAL SUBJECT TRANSFORM PROCEDURE(sents) . Input sentence
2: get access to actual-verb, be-verb and attr in identify procedure 10
3: change position of actual-verb and attr in be-verb’s children
4: return [traverse a string(be-verb)]

Algorithm 12 Transform() in CCOMP Analyzer
1: procedure CLAUSE COMPONENT TRANSFORM PROCEDURE(sents) . Input sentence
2: cut CCOMP link in dependency tree
3: subject← find ccomp verb’s subject
4: if subject 6= NULL and subject 6= DET(e.g. ‘that’) then
5: if original verb do not have object then
6: make subject as original verb’s object
7: else if subject = DET (e.g. ‘that’) then
8: find root verb’s object, substitute ‘that’
9: str1← traverse a string(ccomp verb)
10: str2← traverse a string(original verb)
11: return [str1, str2]

Algorithm 13 Transform() in XCOMP Analyzer
1: procedure OPEN CLAUSAL COMPONENT TRANSFORM PROCEDURE(sents) . Input sentence
2: subject-token← find subject(xcomp-verb-token) . find subject of the actual verb
3: results← empty list
4: if AUX 6∈ sents then . for some cases two verbs needs to be output
5: cut xcomp link
6: results.add(traverse a string(xcomp-verb-token))
7: remove AUX token in the dependency tree
8: replace xcomp-verb-token in subject’s children with actual-verb-token
9: results.add(traverse a string(actual-verb-token))
10: return results

Algorithm 14 Transform() in ACL Analyzer
1: procedure ADJECTIVE CLAUSE TRANSFORM PROCEDURE(sents) . Input Sentence
2: cut acl edge in dependency tree
3: str1← traverse a string(root-token)
4: mid-fix← empty string
5: if acl-token.tag = VBN and by-token in acl-token’s right children then
6: mid-fix← ‘be’
7: update acl-verb-token’s left children with [acl-noun, mid-fix, [t ∈ acl-verb-token.lefts where t.dep 6∈ [AUX]]
8: correct acl-verb-tense
9: str2← traverse a string(acl-verb-token)
10: return [str1, str2]

Algorithm 15 Get-Temporal Function at Line 5 in Algorithm 3
1: procedure ADVERBIAL CLAUSE TEMPORAL INFO EXTRACTION PROCEDURE(prep− or−mark, cur− temp). The PREP or MARK token in input

sentence
2: flag← False . whether we change the temp
3: if prep-or-mark.type = PREP then
4: sign← -1
5: else
6: sign← 1
7: text← prep-or-mark.text.lower()
8: if text = as then
9: flag← True
10: else if text ∈ [until, till] then
11: flag← True
12: cur-temp← cur-temp + sign
13: else if text = after then
14: flag← True
15: cur-temp← cur-temp - sign
16: else if text = before then
17: flag← True
18: cur-temp← cur-temp + sign
19: return [flag, cur-temp]
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Appendix C: Action Representation Fields

Action Representation Fields (ARFs) in the demo sentence James gently throws a red ball to Alice in
the restaurant from back, extracted with SRL:

owner: James
target: a red ball
prop: to Alice
action: throw
origin action: throws
manner: gently
modifier location: in the restaurant
modifier direction: from back

In this case, our output for the prop and target is not correct; they should be swapped. This is one
example where this module can introduce errors.

Additional ARFs, extracted heuristically:

startTime: Calculated by current scene time

duration: We have a pre-defined list of words that when appearing in the sentence, they will indicate a short duration
(e.g “run” or “fast”) and therefore the duration will be set to 1 second; in contrast, for words like “slowly” we assign a
duration of 4 seconds; otherwise, the duration is 2 seconds.

speed: Similarly to duration, we have pre-defined lists of words that would affect the speed of the pre-baked animation:
“angrily” would result in faster movement, but “carefully” in slower movement. We have 3 scales: 0.5, 1, 2 which
corresponds to slow, normal and fast.

translation: We have a list of actions which would entail a movement in from one place to another, e.g. “go”. If the value
of the action exists in this list, it is set to True, otherwise False.

rotation: If the action exists in our list of verbs that entail rotation, this field is True, otherwise False. Rotation refers to
movement in place e.g. “turn” or “sit”.

emotion: We find the closet neighbor of each word in the sentence in list of words that indicate emotion, using word
vector similarity. If the similarity exceeds an empirically tested threshold, then we take the corresponding emotion word
as the emotion field of this action.

partial start time: an important field, since it controls the sequence order of each action. It determines which actions
happen in parallel and which happen sequentially. This is still an open question. We solve this problem when doing
sentence simplification. Together with the input sentence, current time is also fed into each Analyzer. There are several
rules in some of the Analyzers to obtain temporal information. For example, in Line 5 of the Adverbial Clause Analyzer
(c.f.3), we assign different temporal sequences for simplified actions. The algorithm is shown in Algorithm 15. The sign
together with specific prepositions determines the change direction of current temporal id. In the Coordination Analyzer,
the current temporal id changes when it encounters two verbs sharing same subject. Then the later action will get a bigger
temporal id.


