@inproceedings{jiang-etal-2019-hlt,
title = "{HLT}@{SUDA} at {S}em{E}val-2019 Task 1: {UCCA} Graph Parsing as Constituent Tree Parsing",
author = "Jiang, Wei and
Li, Zhenghua and
Zhang, Yu and
Zhang, Min",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2002/",
doi = "10.18653/v1/S19-2002",
pages = "11--15",
abstract = "This paper describes a simple UCCA semantic graph parsing approach. The key idea is to convert a UCCA semantic graph into a constituent tree, in which extra labels are deliberately designed to mark remote edges and discontinuous nodes for future recovery. In this way, we can make use of existing syntactic parsing techniques. Based on the data statistics, we recover discontinuous nodes directly according to the output labels of the constituent parser and use a biaffine classification model to recover the more complex remote edges. The classification model and the constituent parser are simultaneously trained under the multi-task learning framework. We use the multilingual BERT as extra features in the open tracks. Our system ranks the first place in the six English/German closed/open tracks among seven participating systems. For the seventh cross-lingual track, where there is little training data for French, we propose a language embedding approach to utilize English and German training data, and our result ranks the second place."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jiang-etal-2019-hlt">
<titleInfo>
<title>HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as Constituent Tree Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenghua</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes a simple UCCA semantic graph parsing approach. The key idea is to convert a UCCA semantic graph into a constituent tree, in which extra labels are deliberately designed to mark remote edges and discontinuous nodes for future recovery. In this way, we can make use of existing syntactic parsing techniques. Based on the data statistics, we recover discontinuous nodes directly according to the output labels of the constituent parser and use a biaffine classification model to recover the more complex remote edges. The classification model and the constituent parser are simultaneously trained under the multi-task learning framework. We use the multilingual BERT as extra features in the open tracks. Our system ranks the first place in the six English/German closed/open tracks among seven participating systems. For the seventh cross-lingual track, where there is little training data for French, we propose a language embedding approach to utilize English and German training data, and our result ranks the second place.</abstract>
<identifier type="citekey">jiang-etal-2019-hlt</identifier>
<identifier type="doi">10.18653/v1/S19-2002</identifier>
<location>
<url>https://aclanthology.org/S19-2002/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>11</start>
<end>15</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as Constituent Tree Parsing
%A Jiang, Wei
%A Li, Zhenghua
%A Zhang, Yu
%A Zhang, Min
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F jiang-etal-2019-hlt
%X This paper describes a simple UCCA semantic graph parsing approach. The key idea is to convert a UCCA semantic graph into a constituent tree, in which extra labels are deliberately designed to mark remote edges and discontinuous nodes for future recovery. In this way, we can make use of existing syntactic parsing techniques. Based on the data statistics, we recover discontinuous nodes directly according to the output labels of the constituent parser and use a biaffine classification model to recover the more complex remote edges. The classification model and the constituent parser are simultaneously trained under the multi-task learning framework. We use the multilingual BERT as extra features in the open tracks. Our system ranks the first place in the six English/German closed/open tracks among seven participating systems. For the seventh cross-lingual track, where there is little training data for French, we propose a language embedding approach to utilize English and German training data, and our result ranks the second place.
%R 10.18653/v1/S19-2002
%U https://aclanthology.org/S19-2002/
%U https://doi.org/10.18653/v1/S19-2002
%P 11-15
Markdown (Informal)
[HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as Constituent Tree Parsing](https://aclanthology.org/S19-2002/) (Jiang et al., SemEval 2019)
ACL