@inproceedings{yu-sagae-2019-uc,
title = "{UC} {D}avis at {S}em{E}val-2019 Task 1: {DAG} Semantic Parsing with Attention-based Decoder",
author = "Yu, Dian and
Sagae, Kenji",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2017",
doi = "10.18653/v1/S19-2017",
pages = "119--124",
abstract = "We present an encoder-decoder model for semantic parsing with UCCA SemEval 2019 Task 1. The encoder is a Bi-LSTM and the decoder uses recursive self-attention. The proposed model alleviates challenges and feature engineering in traditional transition-based and graph-based parsers. The resulting parser is simple and proved to effective on the semantic parsing task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-sagae-2019-uc">
<titleInfo>
<title>UC Davis at SemEval-2019 Task 1: DAG Semantic Parsing with Attention-based Decoder</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dian</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenji</namePart>
<namePart type="family">Sagae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present an encoder-decoder model for semantic parsing with UCCA SemEval 2019 Task 1. The encoder is a Bi-LSTM and the decoder uses recursive self-attention. The proposed model alleviates challenges and feature engineering in traditional transition-based and graph-based parsers. The resulting parser is simple and proved to effective on the semantic parsing task.</abstract>
<identifier type="citekey">yu-sagae-2019-uc</identifier>
<identifier type="doi">10.18653/v1/S19-2017</identifier>
<location>
<url>https://aclanthology.org/S19-2017</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>119</start>
<end>124</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UC Davis at SemEval-2019 Task 1: DAG Semantic Parsing with Attention-based Decoder
%A Yu, Dian
%A Sagae, Kenji
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F yu-sagae-2019-uc
%X We present an encoder-decoder model for semantic parsing with UCCA SemEval 2019 Task 1. The encoder is a Bi-LSTM and the decoder uses recursive self-attention. The proposed model alleviates challenges and feature engineering in traditional transition-based and graph-based parsers. The resulting parser is simple and proved to effective on the semantic parsing task.
%R 10.18653/v1/S19-2017
%U https://aclanthology.org/S19-2017
%U https://doi.org/10.18653/v1/S19-2017
%P 119-124
Markdown (Informal)
[UC Davis at SemEval-2019 Task 1: DAG Semantic Parsing with Attention-based Decoder](https://aclanthology.org/S19-2017) (Yu & Sagae, SemEval 2019)
ACL