@inproceedings{ribeiro-etal-2019-l2f,
title = "{L}2{F}/{INESC}-{ID} at {S}em{E}val-2019 Task 2: Unsupervised Lexical Semantic Frame Induction using Contextualized Word Representations",
author = "Ribeiro, Eug{\'e}nio and
Mendon{\c{c}}a, V{\^a}nia and
Ribeiro, Ricardo and
Martins de Matos, David and
Sardinha, Alberto and
Santos, Ana L{\'u}cia and
Coheur, Lu{\'i}sa",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2019/",
doi = "10.18653/v1/S19-2019",
pages = "130--136",
abstract = "Building large datasets annotated with semantic information, such as FrameNet, is an expensive process. Consequently, such resources are unavailable for many languages and specific domains. This problem can be alleviated by using unsupervised approaches to induce the frames evoked by a collection of documents. That is the objective of the second task of SemEval 2019, which comprises three subtasks: clustering of verbs that evoke the same frame and clustering of arguments into both frame-specific slots and semantic roles. We approach all the subtasks by applying a graph clustering algorithm on contextualized embedding representations of the verbs and arguments. Using such representations is appropriate in the context of this task, since they provide cues for word-sense disambiguation. Thus, they can be used to identify different frames evoked by the same words. Using this approach we were able to outperform all of the baselines reported for the task on the test set in terms of Purity F1, as well as in terms of BCubed F1 in most cases."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ribeiro-etal-2019-l2f">
<titleInfo>
<title>L2F/INESC-ID at SemEval-2019 Task 2: Unsupervised Lexical Semantic Frame Induction using Contextualized Word Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eugénio</namePart>
<namePart type="family">Ribeiro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vânia</namePart>
<namePart type="family">Mendonça</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ricardo</namePart>
<namePart type="family">Ribeiro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Martins de Matos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Sardinha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ana</namePart>
<namePart type="given">Lúcia</namePart>
<namePart type="family">Santos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luísa</namePart>
<namePart type="family">Coheur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Building large datasets annotated with semantic information, such as FrameNet, is an expensive process. Consequently, such resources are unavailable for many languages and specific domains. This problem can be alleviated by using unsupervised approaches to induce the frames evoked by a collection of documents. That is the objective of the second task of SemEval 2019, which comprises three subtasks: clustering of verbs that evoke the same frame and clustering of arguments into both frame-specific slots and semantic roles. We approach all the subtasks by applying a graph clustering algorithm on contextualized embedding representations of the verbs and arguments. Using such representations is appropriate in the context of this task, since they provide cues for word-sense disambiguation. Thus, they can be used to identify different frames evoked by the same words. Using this approach we were able to outperform all of the baselines reported for the task on the test set in terms of Purity F1, as well as in terms of BCubed F1 in most cases.</abstract>
<identifier type="citekey">ribeiro-etal-2019-l2f</identifier>
<identifier type="doi">10.18653/v1/S19-2019</identifier>
<location>
<url>https://aclanthology.org/S19-2019/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>130</start>
<end>136</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T L2F/INESC-ID at SemEval-2019 Task 2: Unsupervised Lexical Semantic Frame Induction using Contextualized Word Representations
%A Ribeiro, Eugénio
%A Mendonça, Vânia
%A Ribeiro, Ricardo
%A Martins de Matos, David
%A Sardinha, Alberto
%A Santos, Ana Lúcia
%A Coheur, Luísa
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F ribeiro-etal-2019-l2f
%X Building large datasets annotated with semantic information, such as FrameNet, is an expensive process. Consequently, such resources are unavailable for many languages and specific domains. This problem can be alleviated by using unsupervised approaches to induce the frames evoked by a collection of documents. That is the objective of the second task of SemEval 2019, which comprises three subtasks: clustering of verbs that evoke the same frame and clustering of arguments into both frame-specific slots and semantic roles. We approach all the subtasks by applying a graph clustering algorithm on contextualized embedding representations of the verbs and arguments. Using such representations is appropriate in the context of this task, since they provide cues for word-sense disambiguation. Thus, they can be used to identify different frames evoked by the same words. Using this approach we were able to outperform all of the baselines reported for the task on the test set in terms of Purity F1, as well as in terms of BCubed F1 in most cases.
%R 10.18653/v1/S19-2019
%U https://aclanthology.org/S19-2019/
%U https://doi.org/10.18653/v1/S19-2019
%P 130-136
Markdown (Informal)
[L2F/INESC-ID at SemEval-2019 Task 2: Unsupervised Lexical Semantic Frame Induction using Contextualized Word Representations](https://aclanthology.org/S19-2019/) (Ribeiro et al., SemEval 2019)
ACL
- Eugénio Ribeiro, Vânia Mendonça, Ricardo Ribeiro, David Martins de Matos, Alberto Sardinha, Ana Lúcia Santos, and Luísa Coheur. 2019. L2F/INESC-ID at SemEval-2019 Task 2: Unsupervised Lexical Semantic Frame Induction using Contextualized Word Representations. In Proceedings of the 13th International Workshop on Semantic Evaluation, pages 130–136, Minneapolis, Minnesota, USA. Association for Computational Linguistics.