@inproceedings{poswiata-2019-conssed,
title = "{C}on{SSED} at {S}em{E}val-2019 Task 3: Configurable Semantic and Sentiment Emotion Detector",
author = "Po{\'s}wiata, Rafa{\l}",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2027/",
doi = "10.18653/v1/S19-2027",
pages = "175--179",
abstract = "This paper describes our system participating in the SemEval-2019 Task 3: EmoContext: Contextual Emotion Detection in Text. The goal was to for a given textual dialogue, i.e. a user utterance along with two turns of context, identify the emotion of user utterance as one of the emotion classes: Happy, Sad, Angry or Others. Our system: ConSSED is a configurable combination of semantic and sentiment neural models. The official task submission achieved a micro-average F1 score of 75.31 which placed us 16th out of 165 participating systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="poswiata-2019-conssed">
<titleInfo>
<title>ConSSED at SemEval-2019 Task 3: Configurable Semantic and Sentiment Emotion Detector</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rafał</namePart>
<namePart type="family">Poświata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system participating in the SemEval-2019 Task 3: EmoContext: Contextual Emotion Detection in Text. The goal was to for a given textual dialogue, i.e. a user utterance along with two turns of context, identify the emotion of user utterance as one of the emotion classes: Happy, Sad, Angry or Others. Our system: ConSSED is a configurable combination of semantic and sentiment neural models. The official task submission achieved a micro-average F1 score of 75.31 which placed us 16th out of 165 participating systems.</abstract>
<identifier type="citekey">poswiata-2019-conssed</identifier>
<identifier type="doi">10.18653/v1/S19-2027</identifier>
<location>
<url>https://aclanthology.org/S19-2027/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>175</start>
<end>179</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ConSSED at SemEval-2019 Task 3: Configurable Semantic and Sentiment Emotion Detector
%A Poświata, Rafał
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F poswiata-2019-conssed
%X This paper describes our system participating in the SemEval-2019 Task 3: EmoContext: Contextual Emotion Detection in Text. The goal was to for a given textual dialogue, i.e. a user utterance along with two turns of context, identify the emotion of user utterance as one of the emotion classes: Happy, Sad, Angry or Others. Our system: ConSSED is a configurable combination of semantic and sentiment neural models. The official task submission achieved a micro-average F1 score of 75.31 which placed us 16th out of 165 participating systems.
%R 10.18653/v1/S19-2027
%U https://aclanthology.org/S19-2027/
%U https://doi.org/10.18653/v1/S19-2027
%P 175-179
Markdown (Informal)
[ConSSED at SemEval-2019 Task 3: Configurable Semantic and Sentiment Emotion Detector](https://aclanthology.org/S19-2027/) (Poświata, SemEval 2019)
ACL