@inproceedings{perelkiewicz-2019-cx,
title = "{CX}-{ST}-{RNM} at {S}em{E}val-2019 Task 3: Fusion of Recurrent Neural Networks Based on Contextualized and Static Word Representations for Contextual Emotion Detection",
author = "Pere{\l}kiewicz, Micha{\l}",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2028/",
doi = "10.18653/v1/S19-2028",
pages = "180--184",
abstract = "In this paper, I describe a fusion model combining contextualized and static word representations for approaching the EmoContext task in the SemEval 2019 competition. The model is based on two Recurrent Neural Networks, the first one is fed with a state-of-the-art ELMo deep contextualized word representation and the second one is fed with a static Word2Vec embedding augmented with 10-dimensional affective word feature vector. The proposed model is compared with two baseline models based on a static word representation and a contextualized word representation, separately. My approach achieved officially 0.7278 microaveraged F1 score on the test dataset, ranking 47th out of 165 participants."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="perelkiewicz-2019-cx">
<titleInfo>
<title>CX-ST-RNM at SemEval-2019 Task 3: Fusion of Recurrent Neural Networks Based on Contextualized and Static Word Representations for Contextual Emotion Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michał</namePart>
<namePart type="family">Perełkiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, I describe a fusion model combining contextualized and static word representations for approaching the EmoContext task in the SemEval 2019 competition. The model is based on two Recurrent Neural Networks, the first one is fed with a state-of-the-art ELMo deep contextualized word representation and the second one is fed with a static Word2Vec embedding augmented with 10-dimensional affective word feature vector. The proposed model is compared with two baseline models based on a static word representation and a contextualized word representation, separately. My approach achieved officially 0.7278 microaveraged F1 score on the test dataset, ranking 47th out of 165 participants.</abstract>
<identifier type="citekey">perelkiewicz-2019-cx</identifier>
<identifier type="doi">10.18653/v1/S19-2028</identifier>
<location>
<url>https://aclanthology.org/S19-2028/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>180</start>
<end>184</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CX-ST-RNM at SemEval-2019 Task 3: Fusion of Recurrent Neural Networks Based on Contextualized and Static Word Representations for Contextual Emotion Detection
%A Perełkiewicz, Michał
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F perelkiewicz-2019-cx
%X In this paper, I describe a fusion model combining contextualized and static word representations for approaching the EmoContext task in the SemEval 2019 competition. The model is based on two Recurrent Neural Networks, the first one is fed with a state-of-the-art ELMo deep contextualized word representation and the second one is fed with a static Word2Vec embedding augmented with 10-dimensional affective word feature vector. The proposed model is compared with two baseline models based on a static word representation and a contextualized word representation, separately. My approach achieved officially 0.7278 microaveraged F1 score on the test dataset, ranking 47th out of 165 participants.
%R 10.18653/v1/S19-2028
%U https://aclanthology.org/S19-2028/
%U https://doi.org/10.18653/v1/S19-2028
%P 180-184
Markdown (Informal)
[CX-ST-RNM at SemEval-2019 Task 3: Fusion of Recurrent Neural Networks Based on Contextualized and Static Word Representations for Contextual Emotion Detection](https://aclanthology.org/S19-2028/) (Perełkiewicz, SemEval 2019)
ACL