@inproceedings{bogdan-2019-gensmt,
title = "{G}en{SMT} at {S}em{E}val-2019 Task 3: Contextual Emotion Detection in tweets using multi task generic approach",
author = "Bogdan, Dumitru",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2037/",
doi = "10.18653/v1/S19-2037",
pages = "225--229",
abstract = "In this paper, we describe our participation in SemEval-2019 Task 3: EmoContext - A Shared Task on Contextual Emotion Detection in Text. We propose a three layer model with a generic, multi-purpose approach that without any task specific optimizations achieve competitive results (f1 score of 0.7096) in the EmoContext task. We describe our development strategy in detail along with an exposition of our results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bogdan-2019-gensmt">
<titleInfo>
<title>GenSMT at SemEval-2019 Task 3: Contextual Emotion Detection in tweets using multi task generic approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dumitru</namePart>
<namePart type="family">Bogdan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe our participation in SemEval-2019 Task 3: EmoContext - A Shared Task on Contextual Emotion Detection in Text. We propose a three layer model with a generic, multi-purpose approach that without any task specific optimizations achieve competitive results (f1 score of 0.7096) in the EmoContext task. We describe our development strategy in detail along with an exposition of our results.</abstract>
<identifier type="citekey">bogdan-2019-gensmt</identifier>
<identifier type="doi">10.18653/v1/S19-2037</identifier>
<location>
<url>https://aclanthology.org/S19-2037/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>225</start>
<end>229</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GenSMT at SemEval-2019 Task 3: Contextual Emotion Detection in tweets using multi task generic approach
%A Bogdan, Dumitru
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F bogdan-2019-gensmt
%X In this paper, we describe our participation in SemEval-2019 Task 3: EmoContext - A Shared Task on Contextual Emotion Detection in Text. We propose a three layer model with a generic, multi-purpose approach that without any task specific optimizations achieve competitive results (f1 score of 0.7096) in the EmoContext task. We describe our development strategy in detail along with an exposition of our results.
%R 10.18653/v1/S19-2037
%U https://aclanthology.org/S19-2037/
%U https://doi.org/10.18653/v1/S19-2037
%P 225-229
Markdown (Informal)
[GenSMT at SemEval-2019 Task 3: Contextual Emotion Detection in tweets using multi task generic approach](https://aclanthology.org/S19-2037/) (Bogdan, SemEval 2019)
ACL