@inproceedings{farkas-lacko-2019-nl,
title = "{NL}-{FIIT} at {S}em{E}val-2019 Task 3: Emotion Detection From Conversational Triplets Using Hierarchical Encoders",
author = "Farkas, Michal and
Lacko, Peter",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2046",
doi = "10.18653/v1/S19-2046",
pages = "272--276",
abstract = "In this paper, we present our system submission for the EmoContext, the third task of the SemEval 2019 workshop. Our solution is a hierarchical recurrent neural network with ELMo embeddings and regularization through dropout and Gaussian noise. We have mainly experimented with two main model architectures: simple and hierarchical LSTM network. We have also examined ensembling of the models and various variants of an ensemble. We have achieved microF1 score of 0.7481, which is significantly higher than baseline and currently the 19th best submission.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="farkas-lacko-2019-nl">
<titleInfo>
<title>NL-FIIT at SemEval-2019 Task 3: Emotion Detection From Conversational Triplets Using Hierarchical Encoders</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Farkas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Lacko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present our system submission for the EmoContext, the third task of the SemEval 2019 workshop. Our solution is a hierarchical recurrent neural network with ELMo embeddings and regularization through dropout and Gaussian noise. We have mainly experimented with two main model architectures: simple and hierarchical LSTM network. We have also examined ensembling of the models and various variants of an ensemble. We have achieved microF1 score of 0.7481, which is significantly higher than baseline and currently the 19th best submission.</abstract>
<identifier type="citekey">farkas-lacko-2019-nl</identifier>
<identifier type="doi">10.18653/v1/S19-2046</identifier>
<location>
<url>https://aclanthology.org/S19-2046</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>272</start>
<end>276</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NL-FIIT at SemEval-2019 Task 3: Emotion Detection From Conversational Triplets Using Hierarchical Encoders
%A Farkas, Michal
%A Lacko, Peter
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F farkas-lacko-2019-nl
%X In this paper, we present our system submission for the EmoContext, the third task of the SemEval 2019 workshop. Our solution is a hierarchical recurrent neural network with ELMo embeddings and regularization through dropout and Gaussian noise. We have mainly experimented with two main model architectures: simple and hierarchical LSTM network. We have also examined ensembling of the models and various variants of an ensemble. We have achieved microF1 score of 0.7481, which is significantly higher than baseline and currently the 19th best submission.
%R 10.18653/v1/S19-2046
%U https://aclanthology.org/S19-2046
%U https://doi.org/10.18653/v1/S19-2046
%P 272-276
Markdown (Informal)
[NL-FIIT at SemEval-2019 Task 3: Emotion Detection From Conversational Triplets Using Hierarchical Encoders](https://aclanthology.org/S19-2046) (Farkas & Lacko, SemEval 2019)
ACL