@inproceedings{zhong-miao-2019-ntuer,
title = "ntuer at {S}em{E}val-2019 Task 3: Emotion Classification with Word and Sentence Representations in {RCNN}",
author = "Zhong, Peixiang and
Miao, Chunyan",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2048",
doi = "10.18653/v1/S19-2048",
pages = "282--286",
abstract = "In this paper we present our model on the task of emotion detection in textual conversations in SemEval-2019. Our model extends the Recurrent Convolutional Neural Network (RCNN) by using external fine-tuned word representations and DeepMoji sentence representations. We also explored several other competitive pre-trained word and sentence representations including ELMo, BERT and InferSent but found inferior performance. In addition, we conducted extensive sensitivity analysis, which empirically shows that our model is relatively robust to hyper-parameters. Our model requires no handcrafted features or emotion lexicons but achieved good performance with a micro-F1 score of 0.7463.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhong-miao-2019-ntuer">
<titleInfo>
<title>ntuer at SemEval-2019 Task 3: Emotion Classification with Word and Sentence Representations in RCNN</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peixiang</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chunyan</namePart>
<namePart type="family">Miao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present our model on the task of emotion detection in textual conversations in SemEval-2019. Our model extends the Recurrent Convolutional Neural Network (RCNN) by using external fine-tuned word representations and DeepMoji sentence representations. We also explored several other competitive pre-trained word and sentence representations including ELMo, BERT and InferSent but found inferior performance. In addition, we conducted extensive sensitivity analysis, which empirically shows that our model is relatively robust to hyper-parameters. Our model requires no handcrafted features or emotion lexicons but achieved good performance with a micro-F1 score of 0.7463.</abstract>
<identifier type="citekey">zhong-miao-2019-ntuer</identifier>
<identifier type="doi">10.18653/v1/S19-2048</identifier>
<location>
<url>https://aclanthology.org/S19-2048</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>282</start>
<end>286</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ntuer at SemEval-2019 Task 3: Emotion Classification with Word and Sentence Representations in RCNN
%A Zhong, Peixiang
%A Miao, Chunyan
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F zhong-miao-2019-ntuer
%X In this paper we present our model on the task of emotion detection in textual conversations in SemEval-2019. Our model extends the Recurrent Convolutional Neural Network (RCNN) by using external fine-tuned word representations and DeepMoji sentence representations. We also explored several other competitive pre-trained word and sentence representations including ELMo, BERT and InferSent but found inferior performance. In addition, we conducted extensive sensitivity analysis, which empirically shows that our model is relatively robust to hyper-parameters. Our model requires no handcrafted features or emotion lexicons but achieved good performance with a micro-F1 score of 0.7463.
%R 10.18653/v1/S19-2048
%U https://aclanthology.org/S19-2048
%U https://doi.org/10.18653/v1/S19-2048
%P 282-286
Markdown (Informal)
[ntuer at SemEval-2019 Task 3: Emotion Classification with Word and Sentence Representations in RCNN](https://aclanthology.org/S19-2048) (Zhong & Miao, SemEval 2019)
ACL