@inproceedings{plaza-del-arco-etal-2019-sinai,
title = "{SINAI} at {S}em{E}val-2019 Task 3: Using affective features for emotion classification in textual conversations",
author = "Plaza-del-Arco, Flor Miriam and
Molina-Gonz{\'a}lez, M. Dolores and
Martin, Maite and
Ure{\~n}a-L{\'o}pez, L. Alfonso",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2053/",
doi = "10.18653/v1/S19-2053",
pages = "307--311",
abstract = "Detecting emotions in textual conversation is a challenging problem in absence of nonverbal cues typically associated with emotion, like fa- cial expression or voice modulations. How- ever, more and more users are using message platforms such as WhatsApp or Telegram. For this reason, it is important to develop systems capable of understanding human emotions in textual conversations. In this paper, we carried out different systems to analyze the emotions of textual dialogue from SemEval-2019 Task 3: EmoContext for English language. Our main contribution is the integration of emotional and sentimental features in the classification using the SVM algorithm."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="plaza-del-arco-etal-2019-sinai">
<titleInfo>
<title>SINAI at SemEval-2019 Task 3: Using affective features for emotion classification in textual conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Flor</namePart>
<namePart type="given">Miriam</namePart>
<namePart type="family">Plaza-del-Arco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="given">Dolores</namePart>
<namePart type="family">Molina-González</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maite</namePart>
<namePart type="family">Martin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="given">Alfonso</namePart>
<namePart type="family">Ureña-López</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Detecting emotions in textual conversation is a challenging problem in absence of nonverbal cues typically associated with emotion, like fa- cial expression or voice modulations. How- ever, more and more users are using message platforms such as WhatsApp or Telegram. For this reason, it is important to develop systems capable of understanding human emotions in textual conversations. In this paper, we carried out different systems to analyze the emotions of textual dialogue from SemEval-2019 Task 3: EmoContext for English language. Our main contribution is the integration of emotional and sentimental features in the classification using the SVM algorithm.</abstract>
<identifier type="citekey">plaza-del-arco-etal-2019-sinai</identifier>
<identifier type="doi">10.18653/v1/S19-2053</identifier>
<location>
<url>https://aclanthology.org/S19-2053/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>307</start>
<end>311</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SINAI at SemEval-2019 Task 3: Using affective features for emotion classification in textual conversations
%A Plaza-del-Arco, Flor Miriam
%A Molina-González, M. Dolores
%A Martin, Maite
%A Ureña-López, L. Alfonso
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F plaza-del-arco-etal-2019-sinai
%X Detecting emotions in textual conversation is a challenging problem in absence of nonverbal cues typically associated with emotion, like fa- cial expression or voice modulations. How- ever, more and more users are using message platforms such as WhatsApp or Telegram. For this reason, it is important to develop systems capable of understanding human emotions in textual conversations. In this paper, we carried out different systems to analyze the emotions of textual dialogue from SemEval-2019 Task 3: EmoContext for English language. Our main contribution is the integration of emotional and sentimental features in the classification using the SVM algorithm.
%R 10.18653/v1/S19-2053
%U https://aclanthology.org/S19-2053/
%U https://doi.org/10.18653/v1/S19-2053
%P 307-311
Markdown (Informal)
[SINAI at SemEval-2019 Task 3: Using affective features for emotion classification in textual conversations](https://aclanthology.org/S19-2053/) (Plaza-del-Arco et al., SemEval 2019)
ACL