@inproceedings{b-etal-2019-ssn,
title = "{SSN}{\_}{NLP} at {S}em{E}val-2019 Task 3: Contextual Emotion Identification from Textual Conversation using {S}eq2{S}eq Deep Neural Network",
author = "B., Senthil Kumar and
D., Thenmozhi and
Chandrabose, Aravindan and
Sharavanan, Srinethe",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2055/",
doi = "10.18653/v1/S19-2055",
pages = "318--323",
abstract = "Emotion identification is a process of identifying the emotions automatically from text, speech or images. Emotion identification from textual conversations is a challenging problem due to absence of gestures, vocal intonation and facial expressions. It enables conversational agents, chat bots and messengers to detect and report the emotions to the user instantly for a healthy conversation by avoiding emotional cues and miscommunications. We have adopted a Seq2Seq deep neural network to identify the emotions present in the text sequences. Several layers namely embedding layer, encoding-decoding layer, softmax layer and a loss layer are used to map the sequences from textual conversations to the emotions namely Angry, Happy, Sad and Others. We have evaluated our approach on the EmoContext@SemEval2019 dataset and we have obtained the micro-averaged F1 scores as 0.595 and 0.6568 for the pre-evaluation dataset and final evaluation test set respectively. Our approach improved the base line score by 7{\%} for final evaluation test set."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="b-etal-2019-ssn">
<titleInfo>
<title>SSN_NLP at SemEval-2019 Task 3: Contextual Emotion Identification from Textual Conversation using Seq2Seq Deep Neural Network</title>
</titleInfo>
<name type="personal">
<namePart type="given">Senthil</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">B.</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thenmozhi</namePart>
<namePart type="family">D.</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aravindan</namePart>
<namePart type="family">Chandrabose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Srinethe</namePart>
<namePart type="family">Sharavanan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Emotion identification is a process of identifying the emotions automatically from text, speech or images. Emotion identification from textual conversations is a challenging problem due to absence of gestures, vocal intonation and facial expressions. It enables conversational agents, chat bots and messengers to detect and report the emotions to the user instantly for a healthy conversation by avoiding emotional cues and miscommunications. We have adopted a Seq2Seq deep neural network to identify the emotions present in the text sequences. Several layers namely embedding layer, encoding-decoding layer, softmax layer and a loss layer are used to map the sequences from textual conversations to the emotions namely Angry, Happy, Sad and Others. We have evaluated our approach on the EmoContext@SemEval2019 dataset and we have obtained the micro-averaged F1 scores as 0.595 and 0.6568 for the pre-evaluation dataset and final evaluation test set respectively. Our approach improved the base line score by 7% for final evaluation test set.</abstract>
<identifier type="citekey">b-etal-2019-ssn</identifier>
<identifier type="doi">10.18653/v1/S19-2055</identifier>
<location>
<url>https://aclanthology.org/S19-2055/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>318</start>
<end>323</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SSN_NLP at SemEval-2019 Task 3: Contextual Emotion Identification from Textual Conversation using Seq2Seq Deep Neural Network
%A B., Senthil Kumar
%A D., Thenmozhi
%A Chandrabose, Aravindan
%A Sharavanan, Srinethe
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F b-etal-2019-ssn
%X Emotion identification is a process of identifying the emotions automatically from text, speech or images. Emotion identification from textual conversations is a challenging problem due to absence of gestures, vocal intonation and facial expressions. It enables conversational agents, chat bots and messengers to detect and report the emotions to the user instantly for a healthy conversation by avoiding emotional cues and miscommunications. We have adopted a Seq2Seq deep neural network to identify the emotions present in the text sequences. Several layers namely embedding layer, encoding-decoding layer, softmax layer and a loss layer are used to map the sequences from textual conversations to the emotions namely Angry, Happy, Sad and Others. We have evaluated our approach on the EmoContext@SemEval2019 dataset and we have obtained the micro-averaged F1 scores as 0.595 and 0.6568 for the pre-evaluation dataset and final evaluation test set respectively. Our approach improved the base line score by 7% for final evaluation test set.
%R 10.18653/v1/S19-2055
%U https://aclanthology.org/S19-2055/
%U https://doi.org/10.18653/v1/S19-2055
%P 318-323
Markdown (Informal)
[SSN_NLP at SemEval-2019 Task 3: Contextual Emotion Identification from Textual Conversation using Seq2Seq Deep Neural Network](https://aclanthology.org/S19-2055/) (B. et al., SemEval 2019)
ACL