@inproceedings{baruah-etal-2019-abaruah,
    title = "{ABARUAH} at {S}em{E}val-2019 Task 5 : Bi-directional {LSTM} for Hate Speech Detection",
    author = "Baruah, Arup  and
      Barbhuiya, Ferdous  and
      Dey, Kuntal",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2065/",
    doi = "10.18653/v1/S19-2065",
    pages = "371--376",
    abstract = "In this paper, we present the results obtained using bi-directional long short-term memory (BiLSTM) with and without attention and Logistic Regression (LR) models for SemEval-2019 Task 5 titled ``HatEval: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter''. This paper presents the results obtained for Subtask A for English language. The results of the BiLSTM and LR models are compared for two different types of preprocessing. One with no stemming performed and no stopwords removed. The other with stemming performed and stopwords removed. The BiLSTM model without attention performed the best for the first test, while the LR model with character n-grams performed the best for the second test. The BiLSTM model obtained an F1 score of 0.51 on the test set and obtained an official ranking of 8/71."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baruah-etal-2019-abaruah">
    <titleInfo>
        <title>ABARUAH at SemEval-2019 Task 5 : Bi-directional LSTM for Hate Speech Detection</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Arup</namePart>
        <namePart type="family">Baruah</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ferdous</namePart>
        <namePart type="family">Barbhuiya</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Kuntal</namePart>
        <namePart type="family">Dey</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we present the results obtained using bi-directional long short-term memory (BiLSTM) with and without attention and Logistic Regression (LR) models for SemEval-2019 Task 5 titled “HatEval: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter”. This paper presents the results obtained for Subtask A for English language. The results of the BiLSTM and LR models are compared for two different types of preprocessing. One with no stemming performed and no stopwords removed. The other with stemming performed and stopwords removed. The BiLSTM model without attention performed the best for the first test, while the LR model with character n-grams performed the best for the second test. The BiLSTM model obtained an F1 score of 0.51 on the test set and obtained an official ranking of 8/71.</abstract>
    <identifier type="citekey">baruah-etal-2019-abaruah</identifier>
    <identifier type="doi">10.18653/v1/S19-2065</identifier>
    <location>
        <url>https://aclanthology.org/S19-2065/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>371</start>
            <end>376</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ABARUAH at SemEval-2019 Task 5 : Bi-directional LSTM for Hate Speech Detection
%A Baruah, Arup
%A Barbhuiya, Ferdous
%A Dey, Kuntal
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F baruah-etal-2019-abaruah
%X In this paper, we present the results obtained using bi-directional long short-term memory (BiLSTM) with and without attention and Logistic Regression (LR) models for SemEval-2019 Task 5 titled “HatEval: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter”. This paper presents the results obtained for Subtask A for English language. The results of the BiLSTM and LR models are compared for two different types of preprocessing. One with no stemming performed and no stopwords removed. The other with stemming performed and stopwords removed. The BiLSTM model without attention performed the best for the first test, while the LR model with character n-grams performed the best for the second test. The BiLSTM model obtained an F1 score of 0.51 on the test set and obtained an official ranking of 8/71.
%R 10.18653/v1/S19-2065
%U https://aclanthology.org/S19-2065/
%U https://doi.org/10.18653/v1/S19-2065
%P 371-376
Markdown (Informal)
[ABARUAH at SemEval-2019 Task 5 : Bi-directional LSTM for Hate Speech Detection](https://aclanthology.org/S19-2065/) (Baruah et al., SemEval 2019)
ACL