@inproceedings{almatarneh-etal-2019-citius,
    title = "{C}i{TIUS}-{COLE} at {S}em{E}val-2019 Task 5: Combining Linguistic Features to Identify Hate Speech Against Immigrants and Women on Multilingual Tweets",
    author = "Almatarneh, Sattam  and
      Gamallo, Pablo  and
      Pena, Francisco J. Ribadas",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2068/",
    doi = "10.18653/v1/S19-2068",
    pages = "387--390",
    abstract = "This article describes the strategy submitted by the CiTIUS-COLE team to SemEval 2019 Task 5, a task which consists of binary classi- fication where the system predicting whether a tweet in English or in Spanish is hateful against women or immigrants or not. The proposed strategy relies on combining linguis- tic features to improve the classifier{'}s perfor- mance. More precisely, the method combines textual and lexical features, embedding words with the bag of words in Term Frequency- Inverse Document Frequency (TF-IDF) repre- sentation. The system performance reaches about 81{\%} F1 when it is applied to the training dataset, but its F1 drops to 36{\%} on the official test dataset for the English and 64{\%} for the Spanish language concerning the hate speech class"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="almatarneh-etal-2019-citius">
    <titleInfo>
        <title>CiTIUS-COLE at SemEval-2019 Task 5: Combining Linguistic Features to Identify Hate Speech Against Immigrants and Women on Multilingual Tweets</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Sattam</namePart>
        <namePart type="family">Almatarneh</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Pablo</namePart>
        <namePart type="family">Gamallo</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Francisco</namePart>
        <namePart type="given">J</namePart>
        <namePart type="given">Ribadas</namePart>
        <namePart type="family">Pena</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This article describes the strategy submitted by the CiTIUS-COLE team to SemEval 2019 Task 5, a task which consists of binary classi- fication where the system predicting whether a tweet in English or in Spanish is hateful against women or immigrants or not. The proposed strategy relies on combining linguis- tic features to improve the classifier’s perfor- mance. More precisely, the method combines textual and lexical features, embedding words with the bag of words in Term Frequency- Inverse Document Frequency (TF-IDF) repre- sentation. The system performance reaches about 81% F1 when it is applied to the training dataset, but its F1 drops to 36% on the official test dataset for the English and 64% for the Spanish language concerning the hate speech class</abstract>
    <identifier type="citekey">almatarneh-etal-2019-citius</identifier>
    <identifier type="doi">10.18653/v1/S19-2068</identifier>
    <location>
        <url>https://aclanthology.org/S19-2068/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>387</start>
            <end>390</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CiTIUS-COLE at SemEval-2019 Task 5: Combining Linguistic Features to Identify Hate Speech Against Immigrants and Women on Multilingual Tweets
%A Almatarneh, Sattam
%A Gamallo, Pablo
%A Pena, Francisco J. Ribadas
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F almatarneh-etal-2019-citius
%X This article describes the strategy submitted by the CiTIUS-COLE team to SemEval 2019 Task 5, a task which consists of binary classi- fication where the system predicting whether a tweet in English or in Spanish is hateful against women or immigrants or not. The proposed strategy relies on combining linguis- tic features to improve the classifier’s perfor- mance. More precisely, the method combines textual and lexical features, embedding words with the bag of words in Term Frequency- Inverse Document Frequency (TF-IDF) repre- sentation. The system performance reaches about 81% F1 when it is applied to the training dataset, but its F1 drops to 36% on the official test dataset for the English and 64% for the Spanish language concerning the hate speech class
%R 10.18653/v1/S19-2068
%U https://aclanthology.org/S19-2068/
%U https://doi.org/10.18653/v1/S19-2068
%P 387-390
Markdown (Informal)
[CiTIUS-COLE at SemEval-2019 Task 5: Combining Linguistic Features to Identify Hate Speech Against Immigrants and Women on Multilingual Tweets](https://aclanthology.org/S19-2068/) (Almatarneh et al., SemEval 2019)
ACL