@inproceedings{benito-etal-2019-gsi,
    title = "{GSI}-{UPM} at {S}em{E}val-2019 Task 5: Semantic Similarity and Word Embeddings for Multilingual Detection of Hate Speech Against Immigrants and Women on {T}witter",
    author = "Benito, Diego  and
      Araque, Oscar  and
      Iglesias, Carlos A.",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2070/",
    doi = "10.18653/v1/S19-2070",
    pages = "396--403",
    abstract = "This paper describes the GSI-UPM system for SemEval-2019 Task 5, which tackles multilingual detection of hate speech on Twitter. The main contribution of the paper is the use of a method based on word embeddings and semantic similarity combined with traditional paradigms, such as n-grams, TF-IDF and POS. This combination of several features is fine-tuned through ablation tests, demonstrating the usefulness of different features. While our approach outperforms baseline classifiers on different sub-tasks, the best of our submitted runs reached the 5th position on the Spanish sub-task A."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="benito-etal-2019-gsi">
    <titleInfo>
        <title>GSI-UPM at SemEval-2019 Task 5: Semantic Similarity and Word Embeddings for Multilingual Detection of Hate Speech Against Immigrants and Women on Twitter</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Diego</namePart>
        <namePart type="family">Benito</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Oscar</namePart>
        <namePart type="family">Araque</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Carlos</namePart>
        <namePart type="given">A</namePart>
        <namePart type="family">Iglesias</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes the GSI-UPM system for SemEval-2019 Task 5, which tackles multilingual detection of hate speech on Twitter. The main contribution of the paper is the use of a method based on word embeddings and semantic similarity combined with traditional paradigms, such as n-grams, TF-IDF and POS. This combination of several features is fine-tuned through ablation tests, demonstrating the usefulness of different features. While our approach outperforms baseline classifiers on different sub-tasks, the best of our submitted runs reached the 5th position on the Spanish sub-task A.</abstract>
    <identifier type="citekey">benito-etal-2019-gsi</identifier>
    <identifier type="doi">10.18653/v1/S19-2070</identifier>
    <location>
        <url>https://aclanthology.org/S19-2070/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>396</start>
            <end>403</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GSI-UPM at SemEval-2019 Task 5: Semantic Similarity and Word Embeddings for Multilingual Detection of Hate Speech Against Immigrants and Women on Twitter
%A Benito, Diego
%A Araque, Oscar
%A Iglesias, Carlos A.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F benito-etal-2019-gsi
%X This paper describes the GSI-UPM system for SemEval-2019 Task 5, which tackles multilingual detection of hate speech on Twitter. The main contribution of the paper is the use of a method based on word embeddings and semantic similarity combined with traditional paradigms, such as n-grams, TF-IDF and POS. This combination of several features is fine-tuned through ablation tests, demonstrating the usefulness of different features. While our approach outperforms baseline classifiers on different sub-tasks, the best of our submitted runs reached the 5th position on the Spanish sub-task A.
%R 10.18653/v1/S19-2070
%U https://aclanthology.org/S19-2070/
%U https://doi.org/10.18653/v1/S19-2070
%P 396-403
Markdown (Informal)
[GSI-UPM at SemEval-2019 Task 5: Semantic Similarity and Word Embeddings for Multilingual Detection of Hate Speech Against Immigrants and Women on Twitter](https://aclanthology.org/S19-2070/) (Benito et al., SemEval 2019)
ACL