@inproceedings{chakravartula-2019-hateminer,
title = "{HATEMINER} at {S}em{E}val-2019 Task 5: Hate speech detection against Immigrants and Women in {T}witter using a Multinomial Naive {B}ayes Classifier",
author = "Chakravartula, Nikhil",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2071",
doi = "10.18653/v1/S19-2071",
pages = "404--408",
abstract = "This paper describes our participation in the SemEval 2019 Task 5 - Multilingual Detection of Hate. This task aims to identify hate speech against two specific targets, immigrants and women. We compare and contrast the performance of different word and sentence level embeddings on the state-of-the-art classification algorithms. Our final submission is a Multinomial binarized Naive Bayes model for both the subtasks in the English version.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chakravartula-2019-hateminer">
<titleInfo>
<title>HATEMINER at SemEval-2019 Task 5: Hate speech detection against Immigrants and Women in Twitter using a Multinomial Naive Bayes Classifier</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikhil</namePart>
<namePart type="family">Chakravartula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our participation in the SemEval 2019 Task 5 - Multilingual Detection of Hate. This task aims to identify hate speech against two specific targets, immigrants and women. We compare and contrast the performance of different word and sentence level embeddings on the state-of-the-art classification algorithms. Our final submission is a Multinomial binarized Naive Bayes model for both the subtasks in the English version.</abstract>
<identifier type="citekey">chakravartula-2019-hateminer</identifier>
<identifier type="doi">10.18653/v1/S19-2071</identifier>
<location>
<url>https://aclanthology.org/S19-2071</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>404</start>
<end>408</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HATEMINER at SemEval-2019 Task 5: Hate speech detection against Immigrants and Women in Twitter using a Multinomial Naive Bayes Classifier
%A Chakravartula, Nikhil
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F chakravartula-2019-hateminer
%X This paper describes our participation in the SemEval 2019 Task 5 - Multilingual Detection of Hate. This task aims to identify hate speech against two specific targets, immigrants and women. We compare and contrast the performance of different word and sentence level embeddings on the state-of-the-art classification algorithms. Our final submission is a Multinomial binarized Naive Bayes model for both the subtasks in the English version.
%R 10.18653/v1/S19-2071
%U https://aclanthology.org/S19-2071
%U https://doi.org/10.18653/v1/S19-2071
%P 404-408
Markdown (Informal)
[HATEMINER at SemEval-2019 Task 5: Hate speech detection against Immigrants and Women in Twitter using a Multinomial Naive Bayes Classifier](https://aclanthology.org/S19-2071) (Chakravartula, SemEval 2019)
ACL