@inproceedings{de-la-pena-2019-gl,
title = "{GL} at {S}em{E}val-2019 Task 5: Identifying hateful tweets with a deep learning approach.",
author = "De la Pe{\~n}a, Gretel Liz",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2073",
doi = "10.18653/v1/S19-2073",
pages = "416--419",
abstract = "This paper describes the system we developed for SemEval 2019 on Multilingual detection of hate speech against immigrants and women in Twitter (HatEval - Task 5). We use an approach based on an Attention-based Long Short-Term Memory Recurrent Neural Network. In particular, we build a Bidirectional LSTM to extract information from the word embeddings over the sentence, then apply attention over the hidden states to estimate the importance of each word and finally feed this context vector to another LSTM model to get a representation. Then, the output obtained with this model is used to get the prediction of each of the sub-tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="de-la-pena-2019-gl">
<titleInfo>
<title>GL at SemEval-2019 Task 5: Identifying hateful tweets with a deep learning approach.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gretel</namePart>
<namePart type="given">Liz</namePart>
<namePart type="family">De la Peña</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the system we developed for SemEval 2019 on Multilingual detection of hate speech against immigrants and women in Twitter (HatEval - Task 5). We use an approach based on an Attention-based Long Short-Term Memory Recurrent Neural Network. In particular, we build a Bidirectional LSTM to extract information from the word embeddings over the sentence, then apply attention over the hidden states to estimate the importance of each word and finally feed this context vector to another LSTM model to get a representation. Then, the output obtained with this model is used to get the prediction of each of the sub-tasks.</abstract>
<identifier type="citekey">de-la-pena-2019-gl</identifier>
<identifier type="doi">10.18653/v1/S19-2073</identifier>
<location>
<url>https://aclanthology.org/S19-2073</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>416</start>
<end>419</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GL at SemEval-2019 Task 5: Identifying hateful tweets with a deep learning approach.
%A De la Peña, Gretel Liz
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F de-la-pena-2019-gl
%X This paper describes the system we developed for SemEval 2019 on Multilingual detection of hate speech against immigrants and women in Twitter (HatEval - Task 5). We use an approach based on an Attention-based Long Short-Term Memory Recurrent Neural Network. In particular, we build a Bidirectional LSTM to extract information from the word embeddings over the sentence, then apply attention over the hidden states to estimate the importance of each word and finally feed this context vector to another LSTM model to get a representation. Then, the output obtained with this model is used to get the prediction of each of the sub-tasks.
%R 10.18653/v1/S19-2073
%U https://aclanthology.org/S19-2073
%U https://doi.org/10.18653/v1/S19-2073
%P 416-419
Markdown (Informal)
[GL at SemEval-2019 Task 5: Identifying hateful tweets with a deep learning approach.](https://aclanthology.org/S19-2073) (De la Peña, SemEval 2019)
ACL