@inproceedings{hacohen-kerner-etal-2019-jctdhs,
title = "{JCTDHS} at {S}em{E}val-2019 Task 5: Detection of Hate Speech in Tweets using Deep Learning Methods, Character N-gram Features, and Preprocessing Methods",
author = "HaCohen-Kerner, Yaakov and
Shayovitz, Elyashiv and
Rochman, Shalom and
Cahn, Eli and
Didi, Gal and
Ben-David, Ziv",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2075/",
doi = "10.18653/v1/S19-2075",
pages = "426--430",
abstract = "In this paper, we describe our submissions to SemEval-2019 contest. We tackled subtask A - {\textquotedblleft}a binary classification where systems have to predict whether a tweet with a given target (women or immigrants) is hateful or not hateful{\textquotedblright}, a part of task 5 {\textquotedblleft}Multilingual detection of hate speech against immigrants and women in Twitter (hatEval){\textquotedblright}. Our system JCTDHS (Jerusalem College of Technology Detects Hate Speech) was developed for tweets written in English. We applied various supervised ML methods, various combinations of n-gram features using the TF-IDF scheme and. In addition, we applied various combinations of eight basic preprocessing methods. Our best submission was a special bidirectional RNN, which was ranked at the 11th position out of 68 submissions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hacohen-kerner-etal-2019-jctdhs">
<titleInfo>
<title>JCTDHS at SemEval-2019 Task 5: Detection of Hate Speech in Tweets using Deep Learning Methods, Character N-gram Features, and Preprocessing Methods</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaakov</namePart>
<namePart type="family">HaCohen-Kerner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elyashiv</namePart>
<namePart type="family">Shayovitz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shalom</namePart>
<namePart type="family">Rochman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eli</namePart>
<namePart type="family">Cahn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gal</namePart>
<namePart type="family">Didi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ziv</namePart>
<namePart type="family">Ben-David</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe our submissions to SemEval-2019 contest. We tackled subtask A - “a binary classification where systems have to predict whether a tweet with a given target (women or immigrants) is hateful or not hateful”, a part of task 5 “Multilingual detection of hate speech against immigrants and women in Twitter (hatEval)”. Our system JCTDHS (Jerusalem College of Technology Detects Hate Speech) was developed for tweets written in English. We applied various supervised ML methods, various combinations of n-gram features using the TF-IDF scheme and. In addition, we applied various combinations of eight basic preprocessing methods. Our best submission was a special bidirectional RNN, which was ranked at the 11th position out of 68 submissions.</abstract>
<identifier type="citekey">hacohen-kerner-etal-2019-jctdhs</identifier>
<identifier type="doi">10.18653/v1/S19-2075</identifier>
<location>
<url>https://aclanthology.org/S19-2075/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>426</start>
<end>430</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T JCTDHS at SemEval-2019 Task 5: Detection of Hate Speech in Tweets using Deep Learning Methods, Character N-gram Features, and Preprocessing Methods
%A HaCohen-Kerner, Yaakov
%A Shayovitz, Elyashiv
%A Rochman, Shalom
%A Cahn, Eli
%A Didi, Gal
%A Ben-David, Ziv
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F hacohen-kerner-etal-2019-jctdhs
%X In this paper, we describe our submissions to SemEval-2019 contest. We tackled subtask A - “a binary classification where systems have to predict whether a tweet with a given target (women or immigrants) is hateful or not hateful”, a part of task 5 “Multilingual detection of hate speech against immigrants and women in Twitter (hatEval)”. Our system JCTDHS (Jerusalem College of Technology Detects Hate Speech) was developed for tweets written in English. We applied various supervised ML methods, various combinations of n-gram features using the TF-IDF scheme and. In addition, we applied various combinations of eight basic preprocessing methods. Our best submission was a special bidirectional RNN, which was ranked at the 11th position out of 68 submissions.
%R 10.18653/v1/S19-2075
%U https://aclanthology.org/S19-2075/
%U https://doi.org/10.18653/v1/S19-2075
%P 426-430
Markdown (Informal)
[JCTDHS at SemEval-2019 Task 5: Detection of Hate Speech in Tweets using Deep Learning Methods, Character N-gram Features, and Preprocessing Methods](https://aclanthology.org/S19-2075/) (HaCohen-Kerner et al., SemEval 2019)
ACL
- Yaakov HaCohen-Kerner, Elyashiv Shayovitz, Shalom Rochman, Eli Cahn, Gal Didi, and Ziv Ben-David. 2019. JCTDHS at SemEval-2019 Task 5: Detection of Hate Speech in Tweets using Deep Learning Methods, Character N-gram Features, and Preprocessing Methods. In Proceedings of the 13th International Workshop on Semantic Evaluation, pages 426–430, Minneapolis, Minnesota, USA. Association for Computational Linguistics.