@inproceedings{winter-kern-2019-know,
title = "Know-Center at {S}em{E}val-2019 Task 5: Multilingual Hate Speech Detection on {T}witter using {CNN}s",
author = "Winter, Kevin and
Kern, Roman",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2076",
doi = "10.18653/v1/S19-2076",
pages = "431--435",
abstract = "This paper presents the Know-Center system submitted for task 5 of the SemEval-2019 workshop. Given a Twitter message in either English or Spanish, the task is to first detect whether it contains hateful speech and second, to determine the target and level of aggression used. For this purpose our system utilizes word embeddings and a neural network architecture, consisting of both dilated and traditional convolution layers. We achieved average F1-scores of 0.57 and 0.74 for English and Spanish respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="winter-kern-2019-know">
<titleInfo>
<title>Know-Center at SemEval-2019 Task 5: Multilingual Hate Speech Detection on Twitter using CNNs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Winter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Kern</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the Know-Center system submitted for task 5 of the SemEval-2019 workshop. Given a Twitter message in either English or Spanish, the task is to first detect whether it contains hateful speech and second, to determine the target and level of aggression used. For this purpose our system utilizes word embeddings and a neural network architecture, consisting of both dilated and traditional convolution layers. We achieved average F1-scores of 0.57 and 0.74 for English and Spanish respectively.</abstract>
<identifier type="citekey">winter-kern-2019-know</identifier>
<identifier type="doi">10.18653/v1/S19-2076</identifier>
<location>
<url>https://aclanthology.org/S19-2076</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>431</start>
<end>435</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Know-Center at SemEval-2019 Task 5: Multilingual Hate Speech Detection on Twitter using CNNs
%A Winter, Kevin
%A Kern, Roman
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F winter-kern-2019-know
%X This paper presents the Know-Center system submitted for task 5 of the SemEval-2019 workshop. Given a Twitter message in either English or Spanish, the task is to first detect whether it contains hateful speech and second, to determine the target and level of aggression used. For this purpose our system utilizes word embeddings and a neural network architecture, consisting of both dilated and traditional convolution layers. We achieved average F1-scores of 0.57 and 0.74 for English and Spanish respectively.
%R 10.18653/v1/S19-2076
%U https://aclanthology.org/S19-2076
%U https://doi.org/10.18653/v1/S19-2076
%P 431-435
Markdown (Informal)
[Know-Center at SemEval-2019 Task 5: Multilingual Hate Speech Detection on Twitter using CNNs](https://aclanthology.org/S19-2076) (Winter & Kern, SemEval 2019)
ACL