@inproceedings{zhang-etal-2019-ltl,
    title = "ltl.uni-due at {S}em{E}val-2019 Task 5: Simple but Effective Lexico-Semantic Features for Detecting Hate Speech in {T}witter",
    author = "Zhang, Huangpan  and
      Wojatzki, Michael  and
      Horsmann, Tobias  and
      Zesch, Torsten",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2078/",
    doi = "10.18653/v1/S19-2078",
    pages = "441--446",
    abstract = "In this paper, we present our contribution to SemEval 2019 Task 5 Multilingual Detection of Hate, specifically in the Subtask A (English and Spanish). We compare different configurations of shallow and deep learning approaches on the English data and use the system that performs best in both sub-tasks. The resulting SVM-based system with lexicosemantic features (n-grams and embeddings) is ranked 23rd out of 69 on the English data and beats the baseline system. On the Spanish data our system is ranked 25th out of 39."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2019-ltl">
    <titleInfo>
        <title>ltl.uni-due at SemEval-2019 Task 5: Simple but Effective Lexico-Semantic Features for Detecting Hate Speech in Twitter</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Huangpan</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Michael</namePart>
        <namePart type="family">Wojatzki</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tobias</namePart>
        <namePart type="family">Horsmann</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Torsten</namePart>
        <namePart type="family">Zesch</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we present our contribution to SemEval 2019 Task 5 Multilingual Detection of Hate, specifically in the Subtask A (English and Spanish). We compare different configurations of shallow and deep learning approaches on the English data and use the system that performs best in both sub-tasks. The resulting SVM-based system with lexicosemantic features (n-grams and embeddings) is ranked 23rd out of 69 on the English data and beats the baseline system. On the Spanish data our system is ranked 25th out of 39.</abstract>
    <identifier type="citekey">zhang-etal-2019-ltl</identifier>
    <identifier type="doi">10.18653/v1/S19-2078</identifier>
    <location>
        <url>https://aclanthology.org/S19-2078/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>441</start>
            <end>446</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ltl.uni-due at SemEval-2019 Task 5: Simple but Effective Lexico-Semantic Features for Detecting Hate Speech in Twitter
%A Zhang, Huangpan
%A Wojatzki, Michael
%A Horsmann, Tobias
%A Zesch, Torsten
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F zhang-etal-2019-ltl
%X In this paper, we present our contribution to SemEval 2019 Task 5 Multilingual Detection of Hate, specifically in the Subtask A (English and Spanish). We compare different configurations of shallow and deep learning approaches on the English data and use the system that performs best in both sub-tasks. The resulting SVM-based system with lexicosemantic features (n-grams and embeddings) is ranked 23rd out of 69 on the English data and beats the baseline system. On the Spanish data our system is ranked 25th out of 39.
%R 10.18653/v1/S19-2078
%U https://aclanthology.org/S19-2078/
%U https://doi.org/10.18653/v1/S19-2078
%P 441-446
Markdown (Informal)
[ltl.uni-due at SemEval-2019 Task 5: Simple but Effective Lexico-Semantic Features for Detecting Hate Speech in Twitter](https://aclanthology.org/S19-2078/) (Zhang et al., SemEval 2019)
ACL