@inproceedings{kebriaei-etal-2019-emad,
title = "Emad at {S}em{E}val-2019 Task 6: Offensive Language Identification using Traditional Machine Learning and Deep Learning approaches",
author = "Kebriaei, Emad and
Karimi, Samaneh and
Sabri, Nazanin and
Shakery, Azadeh",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2107/",
doi = "10.18653/v1/S19-2107",
pages = "600--603",
abstract = "In this paper, the used methods and the results obtained by our team, entitled Emad, on the OffensEval 2019 shared task organized at SemEval 2019 are presented. The OffensEval shared task includes three sub-tasks namely Offensive language identification, Automatic categorization of offense types and Offense target identification. We participated in sub-task A and tried various methods including traditional machine learning methods, deep learning methods and also a combination of the first two sets of methods. We also proposed a data augmentation method using word embedding to improve the performance of our methods. The results show that the augmentation approach outperforms other methods in terms of macro-f1."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kebriaei-etal-2019-emad">
<titleInfo>
<title>Emad at SemEval-2019 Task 6: Offensive Language Identification using Traditional Machine Learning and Deep Learning approaches</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emad</namePart>
<namePart type="family">Kebriaei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samaneh</namePart>
<namePart type="family">Karimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nazanin</namePart>
<namePart type="family">Sabri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Azadeh</namePart>
<namePart type="family">Shakery</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, the used methods and the results obtained by our team, entitled Emad, on the OffensEval 2019 shared task organized at SemEval 2019 are presented. The OffensEval shared task includes three sub-tasks namely Offensive language identification, Automatic categorization of offense types and Offense target identification. We participated in sub-task A and tried various methods including traditional machine learning methods, deep learning methods and also a combination of the first two sets of methods. We also proposed a data augmentation method using word embedding to improve the performance of our methods. The results show that the augmentation approach outperforms other methods in terms of macro-f1.</abstract>
<identifier type="citekey">kebriaei-etal-2019-emad</identifier>
<identifier type="doi">10.18653/v1/S19-2107</identifier>
<location>
<url>https://aclanthology.org/S19-2107/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>600</start>
<end>603</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Emad at SemEval-2019 Task 6: Offensive Language Identification using Traditional Machine Learning and Deep Learning approaches
%A Kebriaei, Emad
%A Karimi, Samaneh
%A Sabri, Nazanin
%A Shakery, Azadeh
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F kebriaei-etal-2019-emad
%X In this paper, the used methods and the results obtained by our team, entitled Emad, on the OffensEval 2019 shared task organized at SemEval 2019 are presented. The OffensEval shared task includes three sub-tasks namely Offensive language identification, Automatic categorization of offense types and Offense target identification. We participated in sub-task A and tried various methods including traditional machine learning methods, deep learning methods and also a combination of the first two sets of methods. We also proposed a data augmentation method using word embedding to improve the performance of our methods. The results show that the augmentation approach outperforms other methods in terms of macro-f1.
%R 10.18653/v1/S19-2107
%U https://aclanthology.org/S19-2107/
%U https://doi.org/10.18653/v1/S19-2107
%P 600-603
Markdown (Informal)
[Emad at SemEval-2019 Task 6: Offensive Language Identification using Traditional Machine Learning and Deep Learning approaches](https://aclanthology.org/S19-2107/) (Kebriaei et al., SemEval 2019)
ACL