@inproceedings{doostmohammadi-etal-2019-ghmerti,
    title = "Ghmerti at {S}em{E}val-2019 Task 6: A Deep Word- and Character-based Approach to Offensive Language Identification",
    author = "Doostmohammadi, Ehsan  and
      Sameti, Hossein  and
      Saffar, Ali",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2110/",
    doi = "10.18653/v1/S19-2110",
    pages = "617--621",
    abstract = "This paper presents the models submitted by Ghmerti team for subtasks A and B of the OffensEval shared task at SemEval 2019. OffensEval addresses the problem of identifying and categorizing offensive language in social media in three subtasks; whether or not a content is offensive (subtask A), whether it is targeted (subtask B) towards an individual, a group, or other entities (subtask C). The proposed approach includes character-level Convolutional Neural Network, word-level Recurrent Neural Network, and some preprocessing. The performance achieved by the proposed model is 77.93{\%} macro-averaged F1-score."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="doostmohammadi-etal-2019-ghmerti">
    <titleInfo>
        <title>Ghmerti at SemEval-2019 Task 6: A Deep Word- and Character-based Approach to Offensive Language Identification</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Ehsan</namePart>
        <namePart type="family">Doostmohammadi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hossein</namePart>
        <namePart type="family">Sameti</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ali</namePart>
        <namePart type="family">Saffar</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper presents the models submitted by Ghmerti team for subtasks A and B of the OffensEval shared task at SemEval 2019. OffensEval addresses the problem of identifying and categorizing offensive language in social media in three subtasks; whether or not a content is offensive (subtask A), whether it is targeted (subtask B) towards an individual, a group, or other entities (subtask C). The proposed approach includes character-level Convolutional Neural Network, word-level Recurrent Neural Network, and some preprocessing. The performance achieved by the proposed model is 77.93% macro-averaged F1-score.</abstract>
    <identifier type="citekey">doostmohammadi-etal-2019-ghmerti</identifier>
    <identifier type="doi">10.18653/v1/S19-2110</identifier>
    <location>
        <url>https://aclanthology.org/S19-2110/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>617</start>
            <end>621</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ghmerti at SemEval-2019 Task 6: A Deep Word- and Character-based Approach to Offensive Language Identification
%A Doostmohammadi, Ehsan
%A Sameti, Hossein
%A Saffar, Ali
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F doostmohammadi-etal-2019-ghmerti
%X This paper presents the models submitted by Ghmerti team for subtasks A and B of the OffensEval shared task at SemEval 2019. OffensEval addresses the problem of identifying and categorizing offensive language in social media in three subtasks; whether or not a content is offensive (subtask A), whether it is targeted (subtask B) towards an individual, a group, or other entities (subtask C). The proposed approach includes character-level Convolutional Neural Network, word-level Recurrent Neural Network, and some preprocessing. The performance achieved by the proposed model is 77.93% macro-averaged F1-score.
%R 10.18653/v1/S19-2110
%U https://aclanthology.org/S19-2110/
%U https://doi.org/10.18653/v1/S19-2110
%P 617-621
Markdown (Informal)
[Ghmerti at SemEval-2019 Task 6: A Deep Word- and Character-based Approach to Offensive Language Identification](https://aclanthology.org/S19-2110/) (Doostmohammadi et al., SemEval 2019)
ACL