@inproceedings{kannan-stein-2019-tukast,
title = {{T}{\"u}{K}a{S}t at {S}em{E}val-2019 Task 6: Something Old, Something Neu(ral): Traditional and Neural Approaches to Offensive Text Classification},
author = "Kannan, Madeeswaran and
Stein, Lukas",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2134/",
doi = "10.18653/v1/S19-2134",
pages = "763--769",
abstract = {We describe our system (T{\"u}KaSt) submitted for Task 6: Offensive Language Classification, at SemEval 2019. We developed multiple SVM classifier models that used sentence-level dense vector representations of tweets enriched with sentiment information and term-weighting. Our best results achieved F1 scores of 0.734, 0.660 and 0.465 in the first, second and third sub-tasks respectively. We also describe a neural network model that was developed in parallel but not used during evaluation due to time constraints.}
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kannan-stein-2019-tukast">
<titleInfo>
<title>TüKaSt at SemEval-2019 Task 6: Something Old, Something Neu(ral): Traditional and Neural Approaches to Offensive Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Madeeswaran</namePart>
<namePart type="family">Kannan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lukas</namePart>
<namePart type="family">Stein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe our system (TüKaSt) submitted for Task 6: Offensive Language Classification, at SemEval 2019. We developed multiple SVM classifier models that used sentence-level dense vector representations of tweets enriched with sentiment information and term-weighting. Our best results achieved F1 scores of 0.734, 0.660 and 0.465 in the first, second and third sub-tasks respectively. We also describe a neural network model that was developed in parallel but not used during evaluation due to time constraints.</abstract>
<identifier type="citekey">kannan-stein-2019-tukast</identifier>
<identifier type="doi">10.18653/v1/S19-2134</identifier>
<location>
<url>https://aclanthology.org/S19-2134/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>763</start>
<end>769</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TüKaSt at SemEval-2019 Task 6: Something Old, Something Neu(ral): Traditional and Neural Approaches to Offensive Text Classification
%A Kannan, Madeeswaran
%A Stein, Lukas
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F kannan-stein-2019-tukast
%X We describe our system (TüKaSt) submitted for Task 6: Offensive Language Classification, at SemEval 2019. We developed multiple SVM classifier models that used sentence-level dense vector representations of tweets enriched with sentiment information and term-weighting. Our best results achieved F1 scores of 0.734, 0.660 and 0.465 in the first, second and third sub-tasks respectively. We also describe a neural network model that was developed in parallel but not used during evaluation due to time constraints.
%R 10.18653/v1/S19-2134
%U https://aclanthology.org/S19-2134/
%U https://doi.org/10.18653/v1/S19-2134
%P 763-769
Markdown (Informal)
[TüKaSt at SemEval-2019 Task 6: Something Old, Something Neu(ral): Traditional and Neural Approaches to Offensive Text Classification](https://aclanthology.org/S19-2134/) (Kannan & Stein, SemEval 2019)
ACL