@inproceedings{wang-etal-2019-ynuwb,
    title = "{YNUWB} at {S}em{E}val-2019 Task 6: K-max pooling {CNN} with average meta-embedding for identifying offensive language",
    author = "Wang, Bin  and
      Zhou, Xiaobing  and
      Zhang, Xuejie",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2143/",
    doi = "10.18653/v1/S19-2143",
    pages = "818--822",
    abstract = "This paper describes the system submitted to SemEval 2019 Task 6: OffensEval 2019. The task aims to identify and categorize offensive language in social media, we only participate in Sub-task A, which aims to identify offensive language. In order to address this task, we propose a system based on a K-max pooling convolutional neural network model, and use an argument for averaging as a valid meta-embedding technique to get a metaembedding. Finally, we also use a cyclic learning rate policy to improve model performance. Our model achieves a Macro F1-score of 0.802 (ranked 9/103) in the Sub-task A."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2019-ynuwb">
    <titleInfo>
        <title>YNUWB at SemEval-2019 Task 6: K-max pooling CNN with average meta-embedding for identifying offensive language</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Bin</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xiaobing</namePart>
        <namePart type="family">Zhou</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xuejie</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes the system submitted to SemEval 2019 Task 6: OffensEval 2019. The task aims to identify and categorize offensive language in social media, we only participate in Sub-task A, which aims to identify offensive language. In order to address this task, we propose a system based on a K-max pooling convolutional neural network model, and use an argument for averaging as a valid meta-embedding technique to get a metaembedding. Finally, we also use a cyclic learning rate policy to improve model performance. Our model achieves a Macro F1-score of 0.802 (ranked 9/103) in the Sub-task A.</abstract>
    <identifier type="citekey">wang-etal-2019-ynuwb</identifier>
    <identifier type="doi">10.18653/v1/S19-2143</identifier>
    <location>
        <url>https://aclanthology.org/S19-2143/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>818</start>
            <end>822</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNUWB at SemEval-2019 Task 6: K-max pooling CNN with average meta-embedding for identifying offensive language
%A Wang, Bin
%A Zhou, Xiaobing
%A Zhang, Xuejie
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F wang-etal-2019-ynuwb
%X This paper describes the system submitted to SemEval 2019 Task 6: OffensEval 2019. The task aims to identify and categorize offensive language in social media, we only participate in Sub-task A, which aims to identify offensive language. In order to address this task, we propose a system based on a K-max pooling convolutional neural network model, and use an argument for averaging as a valid meta-embedding technique to get a metaembedding. Finally, we also use a cyclic learning rate policy to improve model performance. Our model achieves a Macro F1-score of 0.802 (ranked 9/103) in the Sub-task A.
%R 10.18653/v1/S19-2143
%U https://aclanthology.org/S19-2143/
%U https://doi.org/10.18653/v1/S19-2143
%P 818-822
Markdown (Informal)
[YNUWB at SemEval-2019 Task 6: K-max pooling CNN with average meta-embedding for identifying offensive language](https://aclanthology.org/S19-2143/) (Wang et al., SemEval 2019)
ACL