@inproceedings{el-zanaty-2019-zeyad,
    title = "Zeyad at {S}em{E}val-2019 Task 6: That{'}s Offensive! An All-Out Search For An Ensemble To Identify And Categorize Offense in Tweets.",
    author = "El-Zanaty, Zeyad",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2144/",
    doi = "10.18653/v1/S19-2144",
    pages = "823--828",
    abstract = "The objective of this paper is to provide a description for a classification system built for SemEval-2019 Task 6: OffensEval. This system classifies a tweet as either offensive or not offensive (Sub-task A) and further classifies offensive tweets into categories (Sub-tasks B - C). The system consists of two phases; a brute-force grid search to find the best learners amongst a given set and an ensemble of a subset of these best learners. The system achieved an F1-score of 0.728, ranking in subtask A, an F1-score score of 0.616 in subtask B and an F1-score of 0.509 in subtask C."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="el-zanaty-2019-zeyad">
    <titleInfo>
        <title>Zeyad at SemEval-2019 Task 6: That’s Offensive! An All-Out Search For An Ensemble To Identify And Categorize Offense in Tweets.</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Zeyad</namePart>
        <namePart type="family">El-Zanaty</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>The objective of this paper is to provide a description for a classification system built for SemEval-2019 Task 6: OffensEval. This system classifies a tweet as either offensive or not offensive (Sub-task A) and further classifies offensive tweets into categories (Sub-tasks B - C). The system consists of two phases; a brute-force grid search to find the best learners amongst a given set and an ensemble of a subset of these best learners. The system achieved an F1-score of 0.728, ranking in subtask A, an F1-score score of 0.616 in subtask B and an F1-score of 0.509 in subtask C.</abstract>
    <identifier type="citekey">el-zanaty-2019-zeyad</identifier>
    <identifier type="doi">10.18653/v1/S19-2144</identifier>
    <location>
        <url>https://aclanthology.org/S19-2144/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>823</start>
            <end>828</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Zeyad at SemEval-2019 Task 6: That’s Offensive! An All-Out Search For An Ensemble To Identify And Categorize Offense in Tweets.
%A El-Zanaty, Zeyad
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F el-zanaty-2019-zeyad
%X The objective of this paper is to provide a description for a classification system built for SemEval-2019 Task 6: OffensEval. This system classifies a tweet as either offensive or not offensive (Sub-task A) and further classifies offensive tweets into categories (Sub-tasks B - C). The system consists of two phases; a brute-force grid search to find the best learners amongst a given set and an ensemble of a subset of these best learners. The system achieved an F1-score of 0.728, ranking in subtask A, an F1-score score of 0.616 in subtask B and an F1-score of 0.509 in subtask C.
%R 10.18653/v1/S19-2144
%U https://aclanthology.org/S19-2144/
%U https://doi.org/10.18653/v1/S19-2144
%P 823-828
Markdown (Informal)
[Zeyad at SemEval-2019 Task 6: That’s Offensive! An All-Out Search For An Ensemble To Identify And Categorize Offense in Tweets.](https://aclanthology.org/S19-2144/) (El-Zanaty, SemEval 2019)
ACL