@inproceedings{yamamoto-sekiya-2019-y,
title = "m{\_}y at {S}em{E}val-2019 Task 9: Exploring {BERT} for Suggestion Mining",
author = "Yamamoto, Masahiro and
Sekiya, Toshiyuki",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2152/",
doi = "10.18653/v1/S19-2152",
pages = "888--892",
abstract = "This paper presents our system to the SemEval-2019 Task 9, Suggestion Mining from Online Reviews and Forums. The goal of this task is to extract suggestions such as the expressions of tips, advice, and recommendations. We explore Bidirectional Encoder Representations from Transformers (BERT) focusing on target domain pre-training in Subtask A which provides training and test datasets in the same domain. In Subtask B, the cross domain suggestion mining task, we apply the idea of distant supervision. Our system obtained the third place in Subtask A and the fifth place in Subtask B, which demonstrates its efficacy of our approaches."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yamamoto-sekiya-2019-y">
<titleInfo>
<title>m_y at SemEval-2019 Task 9: Exploring BERT for Suggestion Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masahiro</namePart>
<namePart type="family">Yamamoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toshiyuki</namePart>
<namePart type="family">Sekiya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our system to the SemEval-2019 Task 9, Suggestion Mining from Online Reviews and Forums. The goal of this task is to extract suggestions such as the expressions of tips, advice, and recommendations. We explore Bidirectional Encoder Representations from Transformers (BERT) focusing on target domain pre-training in Subtask A which provides training and test datasets in the same domain. In Subtask B, the cross domain suggestion mining task, we apply the idea of distant supervision. Our system obtained the third place in Subtask A and the fifth place in Subtask B, which demonstrates its efficacy of our approaches.</abstract>
<identifier type="citekey">yamamoto-sekiya-2019-y</identifier>
<identifier type="doi">10.18653/v1/S19-2152</identifier>
<location>
<url>https://aclanthology.org/S19-2152/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>888</start>
<end>892</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T m_y at SemEval-2019 Task 9: Exploring BERT for Suggestion Mining
%A Yamamoto, Masahiro
%A Sekiya, Toshiyuki
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F yamamoto-sekiya-2019-y
%X This paper presents our system to the SemEval-2019 Task 9, Suggestion Mining from Online Reviews and Forums. The goal of this task is to extract suggestions such as the expressions of tips, advice, and recommendations. We explore Bidirectional Encoder Representations from Transformers (BERT) focusing on target domain pre-training in Subtask A which provides training and test datasets in the same domain. In Subtask B, the cross domain suggestion mining task, we apply the idea of distant supervision. Our system obtained the third place in Subtask A and the fifth place in Subtask B, which demonstrates its efficacy of our approaches.
%R 10.18653/v1/S19-2152
%U https://aclanthology.org/S19-2152/
%U https://doi.org/10.18653/v1/S19-2152
%P 888-892
Markdown (Informal)
[m_y at SemEval-2019 Task 9: Exploring BERT for Suggestion Mining](https://aclanthology.org/S19-2152/) (Yamamoto & Sekiya, SemEval 2019)
ACL