@inproceedings{perez-almendros-etal-2019-cardiff,
title = "{C}ardiff {U}niversity at {S}em{E}val-2019 Task 4: Linguistic Features for Hyperpartisan News Detection",
author = "P{\'e}rez-Almendros, Carla and
Espinosa-Anke, Luis and
Schockaert, Steven",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2158/",
doi = "10.18653/v1/S19-2158",
pages = "929--933",
abstract = "This paper summarizes our contribution to the Hyperpartisan News Detection task in SemEval 2019. We experiment with two different approaches: 1) an SVM classifier based on word vector averages and hand-crafted linguistic features, and 2) a BiLSTM-based neural text classifier trained on a filtered training set. Surprisingly, despite their different nature, both approaches achieve an accuracy of 0.74. The main focus of this paper is to further analyze the remarkable fact that a simple feature-based approach can perform on par with modern neural classifiers. We also highlight the effectiveness of our filtering strategy for training the neural network on a large but noisy training set."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="perez-almendros-etal-2019-cardiff">
<titleInfo>
<title>Cardiff University at SemEval-2019 Task 4: Linguistic Features for Hyperpartisan News Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carla</namePart>
<namePart type="family">Pérez-Almendros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Espinosa-Anke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper summarizes our contribution to the Hyperpartisan News Detection task in SemEval 2019. We experiment with two different approaches: 1) an SVM classifier based on word vector averages and hand-crafted linguistic features, and 2) a BiLSTM-based neural text classifier trained on a filtered training set. Surprisingly, despite their different nature, both approaches achieve an accuracy of 0.74. The main focus of this paper is to further analyze the remarkable fact that a simple feature-based approach can perform on par with modern neural classifiers. We also highlight the effectiveness of our filtering strategy for training the neural network on a large but noisy training set.</abstract>
<identifier type="citekey">perez-almendros-etal-2019-cardiff</identifier>
<identifier type="doi">10.18653/v1/S19-2158</identifier>
<location>
<url>https://aclanthology.org/S19-2158/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>929</start>
<end>933</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cardiff University at SemEval-2019 Task 4: Linguistic Features for Hyperpartisan News Detection
%A Pérez-Almendros, Carla
%A Espinosa-Anke, Luis
%A Schockaert, Steven
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F perez-almendros-etal-2019-cardiff
%X This paper summarizes our contribution to the Hyperpartisan News Detection task in SemEval 2019. We experiment with two different approaches: 1) an SVM classifier based on word vector averages and hand-crafted linguistic features, and 2) a BiLSTM-based neural text classifier trained on a filtered training set. Surprisingly, despite their different nature, both approaches achieve an accuracy of 0.74. The main focus of this paper is to further analyze the remarkable fact that a simple feature-based approach can perform on par with modern neural classifiers. We also highlight the effectiveness of our filtering strategy for training the neural network on a large but noisy training set.
%R 10.18653/v1/S19-2158
%U https://aclanthology.org/S19-2158/
%U https://doi.org/10.18653/v1/S19-2158
%P 929-933
Markdown (Informal)
[Cardiff University at SemEval-2019 Task 4: Linguistic Features for Hyperpartisan News Detection](https://aclanthology.org/S19-2158/) (Pérez-Almendros et al., SemEval 2019)
ACL