@inproceedings{amason-etal-2019-harvey,
    title = "Harvey Mudd College at {S}em{E}val-2019 Task 4: The {D}.{X}. Beaumont Hyperpartisan News Detector",
    author = "Amason, Evan  and
      Palanker, Jake  and
      Shen, Mary Clare  and
      Medero, Julie",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2166/",
    doi = "10.18653/v1/S19-2166",
    pages = "967--970",
    abstract = "We use the 600 hand-labelled articles from SemEval Task 4 to hand-tune a classifier with 3000 features for the Hyperpartisan News Detection task. Our final system uses features based on bag-of-words (BoW), analysis of the article title, language complexity, and simple sentiment analysis in a naive Bayes classifier. We trained our final system on the 600,000 articles labelled by publisher. Our final system has an accuracy of 0.653 on the hand-labeled test set. The most effective features are the Automated Readability Index and the presence of certain words in the title. This suggests that hyperpartisan writing uses a distinct writing style, especially in the title."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="amason-etal-2019-harvey">
    <titleInfo>
        <title>Harvey Mudd College at SemEval-2019 Task 4: The D.X. Beaumont Hyperpartisan News Detector</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Evan</namePart>
        <namePart type="family">Amason</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jake</namePart>
        <namePart type="family">Palanker</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mary</namePart>
        <namePart type="given">Clare</namePart>
        <namePart type="family">Shen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Julie</namePart>
        <namePart type="family">Medero</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We use the 600 hand-labelled articles from SemEval Task 4 to hand-tune a classifier with 3000 features for the Hyperpartisan News Detection task. Our final system uses features based on bag-of-words (BoW), analysis of the article title, language complexity, and simple sentiment analysis in a naive Bayes classifier. We trained our final system on the 600,000 articles labelled by publisher. Our final system has an accuracy of 0.653 on the hand-labeled test set. The most effective features are the Automated Readability Index and the presence of certain words in the title. This suggests that hyperpartisan writing uses a distinct writing style, especially in the title.</abstract>
    <identifier type="citekey">amason-etal-2019-harvey</identifier>
    <identifier type="doi">10.18653/v1/S19-2166</identifier>
    <location>
        <url>https://aclanthology.org/S19-2166/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>967</start>
            <end>970</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Harvey Mudd College at SemEval-2019 Task 4: The D.X. Beaumont Hyperpartisan News Detector
%A Amason, Evan
%A Palanker, Jake
%A Shen, Mary Clare
%A Medero, Julie
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F amason-etal-2019-harvey
%X We use the 600 hand-labelled articles from SemEval Task 4 to hand-tune a classifier with 3000 features for the Hyperpartisan News Detection task. Our final system uses features based on bag-of-words (BoW), analysis of the article title, language complexity, and simple sentiment analysis in a naive Bayes classifier. We trained our final system on the 600,000 articles labelled by publisher. Our final system has an accuracy of 0.653 on the hand-labeled test set. The most effective features are the Automated Readability Index and the presence of certain words in the title. This suggests that hyperpartisan writing uses a distinct writing style, especially in the title.
%R 10.18653/v1/S19-2166
%U https://aclanthology.org/S19-2166/
%U https://doi.org/10.18653/v1/S19-2166
%P 967-970
Markdown (Informal)
[Harvey Mudd College at SemEval-2019 Task 4: The D.X. Beaumont Hyperpartisan News Detector](https://aclanthology.org/S19-2166/) (Amason et al., SemEval 2019)
ACL