
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 971–975
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

971

NLP@UIT at SemEval-2019 Task 4: The Paparazzo Hyperpartisan News
Detector

Duc-Vu Nguyen♦, Dang Van Thin♦, and Ngan Luu-Thuy Nguyen♥

♦Multimedia Communications Laboratory
♥Faculty of Computer Science

University of Information Technology, Vietnam National University Ho Chi Minh City, Vietnam
{vund,thindv,ngannlt}@uit.edu.vn

Abstract

This paper describes the system of NLP@UIT
that participated in Task 4 of SemEval-2019.
We developed a system that predicts whether
an English news article follows a hyperparti-
san argumentation. Paparazzo is the name of
our system and is also the code name of our
team in Task 4 of SemEval-2019. The Pa-
parazzo system, in which we use tri-grams
of words and hepta-grams of characters, offi-
cially ranks thirteen with an accuracy of 0.747.
Another system of ours, which utilizes tri-
grams of words, tri-grams of characters, tri-
grams of part-of-speech, syntactic dependency
sub-trees, and named-entity recognition tags,
achieved an accuracy of 0.787 and is proposed
after the deadline of Task 4.

1 Introduction

Fake news is a noteworthy term in recent years.
The rise of users and rapid spread information on
social networking have made on automatic con-
trolling of fake news more difficult. Fake news ar-
ticles are typically extremely one-sided (hyperpar-
tisan), inflammatory, emotional, and often riddled
with untruths (Potthast et al., 2018). The influence
of misinformation varies depending on the style
it is written in. For example, sarcasm in a sports
news article will have less of an impact than news
written in the hyper-partisan argumentation style,
which can sway voter decision in an election.

Hyperpartisan detection in news articles is one
of the ways to control fake news on the media
and public. Kiesel et al. (2019) provided a new
task, which they name “Hyperpartisan News De-
tection,” to decide whether a news article text fol-
lows a hyperpartisan argumentation. We approach
this task following traditional text classification by
extracting style features. The bag-of-words model
is the way of text representation and is applied to
sentiment analysis effectively (Pang et al., 2002).

Matsumoto et al. (2005) applied text mining tech-
niques on dependency sub-trees as features for
sentiment analysis at the document level. Our re-
sults show that n-grams of words and dependency
sub-trees features from sentences of the document
have certain impacts on the performance of the
classifier. The details of the features in our sys-
tems and the results are described in Section 3 and
Section 4.

2 Task Description

SemEval2019 Task 4 has only one task, in which
participants are required to build the systems
for hyperpartisan news detection. The task is
to predict which category (“hyper-partisan” vs.
“not hyper-partisan”) an argumentation belongs to
when given the news article in English (Kiesel
et al., 2019). There are 645 articles in the
for-ranking training set, and 628 articles in the
for-ranking testing set (all of them are labeled
through crowdsourcing on an article basis). Be-
sides, the organizers of this task provided another
dataset with the training/validation/testing set hav-
ing 600,000/150,000/4,000 articles (all of them are
labeled in accordance with the judgment of the
publisher). The organizers use the accuracy as the
main metric in the for-ranking testing set to eval-
uate the performance of the participants’ systems.
All submissions and results are validated by the or-
ganizers via the evaluation service TIRA (Potthast
et al., 2019).

3 System Description

In this section, we describe the major stages we
followed, as well as the prediction models we uti-
lized in our detection system.



972

Title

HTML <p> tag

Text

HTML <p> tag

sentence1

sentence1, sentence2, ..., sentencem

sentence1, sentence2, ..., sentencen

sentence1, sentence2, ..., sentencep

Input Extracted sentences

Figure 1: Diagram of data preprocessing.

3.1 Data Preprocessing

Data preprocessing of the given input is the im-
portant phase for every task related to natural lan-
guage processing. The input of SemEval-2019
Task 4 is an XML file, containing a title and many
paragraphs in the body text. Paragraph segmen-
tation is based on the HTML ăpą tag because
the ăpą tag defines a paragraph. While many
paragraphs are wrapped by the ăpą tag, some are
not. Observation of some inputs from the dataset
shows that paragraphs that are not wrapped by any
HTML tag may contain “noise,” such as advertise-
ments and the browser’s error messages. On the
other hand, texts displayed in HTML ăpą tags
can also contain “noise,” such as notifications for
redirecting a page (e.g., “Click here to...”). We did
not handle the aforementioned noises in our exper-
iment.

The next step after paragraph segmentation is
sentence segmentation. During this process, we
used spaCy tool (Honnibal and Montani, 2017) to
extract sentences from titles, HTML ăpą tags,
and paragraphs not wrapped in any HTML tag of
input (as we can see the diagram in Figure 1).

3.2 Features Extraction

3.2.1 N-grams of words
Before extracting n-grams of words, we break the
sentences into words in three ways:

1. WS1: The sentence is split by space/multi-
space into tokens.

2. WS2: The sentence is split by space/multi-
space into tokens. After that, we discard to-
kens which are punctuations or English stop-
words.

3. WS3: The sentence is segmented into words.
And then, we lemmatize words into lemmas.
All is done by using the spaCy tool (Honnibal
and Montani, 2017).

After splitting/segmenting the sentence into to-
kens/words, we put tokens/words are all in lower-
case and implement extracting n-grams of them.
The specific values of n for prediction models are
mentioned in section 3.3.

3.2.2 N-grams of characters
Extracting n-grams of words is effective for text
classification that is word-based representation,
but this approach requires reliable tokenizers for
breaking the sentences into words. Experiments
on unsolicited e-mail messages (spam) and a va-
riety of evaluation measures, Kanaris et al. (2007)
show that n-grams of characters are more reliable
to classify texts than n-grams of words. Potthast
et al. (2018) show how a style analysis can dis-
tinguish hyperpartisan news from the mainstream,
and they also use tri-grams of characters as fea-
tures for the classifier in their experiments. As we
described in section 3.1, unfortunately, the input of
SemEval-2019 Task 4 contains a small number of
strange n-grams of characters towards the tokeniz-
ers. Therefore, we decide to use n-grams of char-
acters as the features in our system. We use the
sentence with all of its tokens being rejoined af-
ter the segmentation in WS1 (we described in sec-
tion 3.2.1) with character space for extracting n-
grams of characters. In our experiments, the value
of n ranging from 2 to 7 and the specific values for
prediction models are mentioned in section 3.3.

3.2.3 N-grams of part-of-speech
Argamon et al. (2003) found that n-grams of part-
of-speech can efficiently capture syntactical infor-
mation and gender-based style of the writer. Pot-
thast et al. (2018) used tri-grams of part-of-speech
to make a comparative style analysis of hyperpar-
tisan (extremely one-sided) news and fake news.
Although the efficacy of using n-grams of part-
of-speech on fake news was not examined in their
study, we decided to experiment by using n-grams
of part-of-speech as features for hyper-partisan
news detection. We used the spaCy tool (Honnibal
and Montani, 2017) for part-of-speech tagging and
extract tri-grams of part-of-speech as features.

3.2.4 Sub-trees of dependency tree
In our experiment, dependency parsing involves
extracting from a dependency tree a dependency
sub-tree, which is defined by Matsumoto et al.
(2005) as “a tree obtained by removing zero or
more nodes and branches from the original de-



973

“

INTJ

She

PRON

’s

VERB

the

DET

one,

NOUN

and

CCONJ

PER_X,

PROPN

that

ADJ

caused

VERB

the

DET

violence,”

NOUN

PER_Y

PROPN

said.

VERB

nsubj

ccomp

det

attr
cc

npadvmod

conj

det

dobj

nsubjnsubj

Figure 2: Visualization of the dependency tree of the sentence within the bracket (“She’s the one, and PER X, that
caused the violence,” PER Y said.). This sentence is taken from a news article of the training for-ranking training
set which is mentioned in Section 2. The person’s name is replaced by PER {uppercase letter} in this example (we
did not do that in our experiment).

PRON

’s 

,

’s 

PER_Y

say 

,

say 

,

’s 

PRON ,

say 

.

,

say 

.  ’s 

Figure 3: Visualization of seven sub-trees which are
extracted from the dependency tree in Figure 2. There
are four sub-trees with two nodes, two sub-trees with
three nodes, one sub-tree with four nodes in the current
figure. All words in this example are lemmatized.

pendency tree.” Figure 2 illustrates a dependency
tree of a sentence parsed with spaCy tool (Honni-
bal and Montani, 2017), and its shortcoming that
shows the double quotation mark on the left does
not have any child node or parent node. This short-
coming, however, did not affect the extraction of
all sub-trees of the dependency tree, but we re-
solved this issue by considering each group of sub-
trees as one connected component, and the depen-
dency tree as a graph that can contain more than
one connected component. Figure 3, the num-
ber of nodes in a sub-tree can range from 2 to 4,
and NetworkX tool (developed by Hagberg et al.
(2008)) was used to extract all the sub-trees of the
original dependency tree as one connected com-
ponent for each node. All words at each node of
sub-trees are lemmatized in our experiment. As
we can see in Figure 3, some sub-trees can capture
words which are not located close to each other.

3.2.5 Named-entity recognition tags

Characteristics of the input of SemEval-2019 Task
4 contains names of people, names of organiza-
tions. Therefore, we decided to use mentions of
specific terms in named-entity recognition as fea-
tures. In our experiments, a feature is represented
by concatenating a mention and a named-entity
recognition tag. We used the spaCy tool (Honnibal
and Montani, 2017) for the named-entity recogni-
tion task.

3.3 Prediction Models

In this section, we describe the four models which
we have summited to the organizers. In all models,
we used linear SVM (SGDClassifier from Scikit-
learn (Pedregosa et al., 2011)) as the classifier, and
the loss function which is hinge loss with L2 reg-
ularization. In all models, we did not run valida-
tion experiments for turning regularization term α
of all models. We used just the default value of
α “ 0.0001 following SGDClassifier from Scikit-
learn (Pedregosa et al., 2011). Most importantly,
we concatenated different count vectors by way of
extracting features described in section 3.2, to ob-
tain the input representation of the model.

3.3.1 First model

This model uses tri-grams of words which are
split from the text of the article (we did not seg-
ment the text into sentences) the way described in
WS1 in section 3.2.1). Besides, the first model
uses hepta-grams of characters from the text of
the article as features. We discarded the title when
extracting the features for the first model, and we
do not distinguish between texts with the HTML
ăpą tag wrapping and those without (as men-
tioned in section 3.1).



974

3.3.2 Second model
We extracted bi-grams of characters from the body
text regardless of whether the text is wrapped by
the HTML ăpą tag or not, and for the title,
we followed the way mentioned in WS2 in sec-
tion 3.2.1) to extract its bi-grams of words. Addi-
tionally, we extracted all mentions of named-entity
recognition from all sentences of the article, and
we distinguished between features from the title
and those from the body text.

3.3.3 Third model
This model shares similar features with the second
one, except for our extraction of the dependency
sub-trees.

3.3.4 Fourth model
In this model, the title, the text with the HTML
ăpą wrapping, and those without are distin-
guished. All sentences are segmented to tokens in
the same way described in WS3 in section 3.2.1).
We used tri-grams of words, tri-grams of char-
acters, tri-grams of part-of-speech, syntactic de-
pendency sub-trees, and named-entity recognition
tags to extract the text before performing the TF-
IDF transformation with Scikit-learn tool (devel-
oped by Pedregosa et al. (2011)) on the combined
features with min df at 0.05 and max df at 0.95.

4 Results

Accuracy Precision Recall F1
First model1 0.747 0.754 0.732 0.743
Second model 0.685 0.687 0.678 0.683
Third model 0.707 0.666 0.831 0.739
Fourth model2 0.787 0.796 0.771 0.783

Table 1: Metric summary of fully trained models on
the official test dataset.

We did not use the training dataset of 600,000
articles for training all the models in our exper-
iments. The result (Table 1) shows a decrease
in performance of the second and the third mod-
els when the n-grams of words were not used as
features. The accuracy of the third model, how-
ever, increased by 2% compared with the second
model when the extra dependency sub-trees were
used as features. On the other hand, the fourth
model achieved the highest accuracy, up to 0.787.

1The first model officially ranks thirteen in Sem-Eval
2019 Task 4.

2The fourth model is proposed after the deadline of Sem-
Eval 2019 Task 4.

This accuracy level, however, is still lower than
that achieved via deep learning techniques, such as
the Convolutional neural network and pre-trained
ELMo representations, employed by “Bertha von
Suttner” team who were ranked first in SemEval-
2019 Task 4.

5 Conclusion

Our major contribution to SemEval-2019 Task 4
is that using n-grams of words and dependency
sub-trees as features for extracting has a posi-
tive impact on the performance of the classifier:
In our experiment, we were able to achieve the
accuracy of 0.787 with the proposed model that
uses tri-grams of words, tri-grams of characters,
tri-grams of part-of-speech, syntactic dependency
sub-trees, and named-entity recognition tags. That
model can also capture words which are not lo-
cated close to each other through dependency sub-
trees. The disadvantages of our models, how-
ever, are that extraction of dependency sub-trees
is a time-consuming process, and the relations be-
tween sentences of the articles are not represented.

References
Shlomo Argamon, Moshe Koppel, Jonathan Fine, and

Anat Rachel Shimoni. 2003. Gender, genre, and
writing style in formal written texts. Text, 23:321–
346.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.
2008. Exploring Network Structure, Dynamics, and
Function using NetworkX. In Proceedings of the 7th
Python in Science Conference, pages 11 – 15.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Ioannis Kanaris, Konstantinos Kanaris, Ioannis Hou-
vardas, and Efstathios Stamatatos. 2007. Words ver-
sus Character n-Grams for Anti-Spam Filtering. In-
ternational Journal on Artificial Intelligence Tools,
16:1047–1067.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Shotaro Matsumoto, Hiroya Takamura, and Manabu
Okumura. 2005. Sentiment Classification Using
Word Sub-sequences and Dependency Sub-trees. In



975

Advances in Knowledge Discovery and Data Min-
ing, pages 301–311, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment Classification using
Machine Learning Techniques. In Proceedings of
the 2002 Conference on Empirical Methods in Natu-
ral Language Processing, pages 79–86. Association
for Computational Linguistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12:2825–2830.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

https://aclanthology.info/papers/P18-1022/p18-1022
https://aclanthology.info/papers/P18-1022/p18-1022

