@inproceedings{knauth-2019-orwellian,
title = "Orwellian-times at {S}em{E}val-2019 Task 4: A Stylistic and Content-based Classifier",
author = {Knauth, J{\"u}rgen},
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2168/",
doi = "10.18653/v1/S19-2168",
pages = "976--980",
abstract = "While fake news detection received quite a bit of attention in recent years, hyperpartisan news detection is still an underresearched topic. This paper presents our work towards building a classification system for hyperpartisan news detection in the context of the SemEval2019 shared task 4. We experiment with two different approaches - a more stylistic one, and a more content related one - achieving average results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="knauth-2019-orwellian">
<titleInfo>
<title>Orwellian-times at SemEval-2019 Task 4: A Stylistic and Content-based Classifier</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jürgen</namePart>
<namePart type="family">Knauth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While fake news detection received quite a bit of attention in recent years, hyperpartisan news detection is still an underresearched topic. This paper presents our work towards building a classification system for hyperpartisan news detection in the context of the SemEval2019 shared task 4. We experiment with two different approaches - a more stylistic one, and a more content related one - achieving average results.</abstract>
<identifier type="citekey">knauth-2019-orwellian</identifier>
<identifier type="doi">10.18653/v1/S19-2168</identifier>
<location>
<url>https://aclanthology.org/S19-2168/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>976</start>
<end>980</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Orwellian-times at SemEval-2019 Task 4: A Stylistic and Content-based Classifier
%A Knauth, Jürgen
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F knauth-2019-orwellian
%X While fake news detection received quite a bit of attention in recent years, hyperpartisan news detection is still an underresearched topic. This paper presents our work towards building a classification system for hyperpartisan news detection in the context of the SemEval2019 shared task 4. We experiment with two different approaches - a more stylistic one, and a more content related one - achieving average results.
%R 10.18653/v1/S19-2168
%U https://aclanthology.org/S19-2168/
%U https://doi.org/10.18653/v1/S19-2168
%P 976-980
Markdown (Informal)
[Orwellian-times at SemEval-2019 Task 4: A Stylistic and Content-based Classifier](https://aclanthology.org/S19-2168/) (Knauth, SemEval 2019)
ACL