@inproceedings{moreno-etal-2019-rouletabille,
title = "Rouletabille at {S}em{E}val-2019 Task 4: Neural Network Baseline for Identification of Hyperpartisan Publishers",
author = "Moreno, Jose G. and
Pitarch, Yoann and
Pinel-Sauvagnat, Karen and
Hubert, Gilles",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2169/",
doi = "10.18653/v1/S19-2169",
pages = "981--984",
abstract = "This paper describes the Rouletabille participation to the Hyperpartisan News Detection task. We propose the use of different text classification methods for this task. Preliminary experiments using a similar collection used in (Potthast et al., 2018) show that neural-based classification methods reach state-of-the art results. Our final submission is composed of a unique run that ranks among all runs at 3/49 position for the by-publisher test dataset and 43/96 for the by-article test dataset in terms of Accuracy."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moreno-etal-2019-rouletabille">
<titleInfo>
<title>Rouletabille at SemEval-2019 Task 4: Neural Network Baseline for Identification of Hyperpartisan Publishers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="given">G</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoann</namePart>
<namePart type="family">Pitarch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karen</namePart>
<namePart type="family">Pinel-Sauvagnat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gilles</namePart>
<namePart type="family">Hubert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the Rouletabille participation to the Hyperpartisan News Detection task. We propose the use of different text classification methods for this task. Preliminary experiments using a similar collection used in (Potthast et al., 2018) show that neural-based classification methods reach state-of-the art results. Our final submission is composed of a unique run that ranks among all runs at 3/49 position for the by-publisher test dataset and 43/96 for the by-article test dataset in terms of Accuracy.</abstract>
<identifier type="citekey">moreno-etal-2019-rouletabille</identifier>
<identifier type="doi">10.18653/v1/S19-2169</identifier>
<location>
<url>https://aclanthology.org/S19-2169/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>981</start>
<end>984</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Rouletabille at SemEval-2019 Task 4: Neural Network Baseline for Identification of Hyperpartisan Publishers
%A Moreno, Jose G.
%A Pitarch, Yoann
%A Pinel-Sauvagnat, Karen
%A Hubert, Gilles
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F moreno-etal-2019-rouletabille
%X This paper describes the Rouletabille participation to the Hyperpartisan News Detection task. We propose the use of different text classification methods for this task. Preliminary experiments using a similar collection used in (Potthast et al., 2018) show that neural-based classification methods reach state-of-the art results. Our final submission is composed of a unique run that ranks among all runs at 3/49 position for the by-publisher test dataset and 43/96 for the by-article test dataset in terms of Accuracy.
%R 10.18653/v1/S19-2169
%U https://aclanthology.org/S19-2169/
%U https://doi.org/10.18653/v1/S19-2169
%P 981-984
Markdown (Informal)
[Rouletabille at SemEval-2019 Task 4: Neural Network Baseline for Identification of Hyperpartisan Publishers](https://aclanthology.org/S19-2169/) (Moreno et al., SemEval 2019)
ACL