@inproceedings{cramerus-scheffler-2019-team,
    title = "Team Kit Kittredge at {S}em{E}val-2019 Task 4: {LSTM} Voting System",
    author = "Cramerus, Rebekah  and
      Scheffler, Tatjana",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2178/",
    doi = "10.18653/v1/S19-2178",
    pages = "1021--1025",
    abstract = "This paper describes the approach of team Kit Kittredge to SemEval-2019 Task 4: Hyperpartisan News Detection. The goal was binary classification of news articles into the categories of ``biased'' or ``unbiased''. We had two software submissions: one a simple bag-of-words model, and the second an LSTM (Long Short Term Memory) neural network, which was trained on a subset of the original dataset selected by a voting system of other LSTMs. This method did not prove much more successful than the baseline, however, due to the models' tendency to learn publisher-specific traits instead of general bias."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cramerus-scheffler-2019-team">
    <titleInfo>
        <title>Team Kit Kittredge at SemEval-2019 Task 4: LSTM Voting System</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Rebekah</namePart>
        <namePart type="family">Cramerus</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tatjana</namePart>
        <namePart type="family">Scheffler</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes the approach of team Kit Kittredge to SemEval-2019 Task 4: Hyperpartisan News Detection. The goal was binary classification of news articles into the categories of “biased” or “unbiased”. We had two software submissions: one a simple bag-of-words model, and the second an LSTM (Long Short Term Memory) neural network, which was trained on a subset of the original dataset selected by a voting system of other LSTMs. This method did not prove much more successful than the baseline, however, due to the models’ tendency to learn publisher-specific traits instead of general bias.</abstract>
    <identifier type="citekey">cramerus-scheffler-2019-team</identifier>
    <identifier type="doi">10.18653/v1/S19-2178</identifier>
    <location>
        <url>https://aclanthology.org/S19-2178/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>1021</start>
            <end>1025</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Team Kit Kittredge at SemEval-2019 Task 4: LSTM Voting System
%A Cramerus, Rebekah
%A Scheffler, Tatjana
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F cramerus-scheffler-2019-team
%X This paper describes the approach of team Kit Kittredge to SemEval-2019 Task 4: Hyperpartisan News Detection. The goal was binary classification of news articles into the categories of “biased” or “unbiased”. We had two software submissions: one a simple bag-of-words model, and the second an LSTM (Long Short Term Memory) neural network, which was trained on a subset of the original dataset selected by a voting system of other LSTMs. This method did not prove much more successful than the baseline, however, due to the models’ tendency to learn publisher-specific traits instead of general bias.
%R 10.18653/v1/S19-2178
%U https://aclanthology.org/S19-2178/
%U https://doi.org/10.18653/v1/S19-2178
%P 1021-1025
Markdown (Informal)
[Team Kit Kittredge at SemEval-2019 Task 4: LSTM Voting System](https://aclanthology.org/S19-2178/) (Cramerus & Scheffler, SemEval 2019)
ACL