@inproceedings{ning-etal-2019-team,
title = "Team Peter-Parker at {S}em{E}val-2019 Task 4: {BERT}-Based Method in Hyperpartisan News Detection",
author = "Ning, Zhiyuan and
Lin, Yuanzhen and
Zhong, Ruichao",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2181",
doi = "10.18653/v1/S19-2181",
pages = "1037--1040",
abstract = "This paper describes the team peter-parker{'}s participation in Hyperpartisan News Detection task (SemEval-2019 Task 4), which requires to classify whether a given news article is bias or not. We decided to use JAVA to do the article parsing tool and the BERT-Based model to do the bias prediction. Furthermore, we will show experiment results with analysis.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ning-etal-2019-team">
<titleInfo>
<title>Team Peter-Parker at SemEval-2019 Task 4: BERT-Based Method in Hyperpartisan News Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Ning</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanzhen</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruichao</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the team peter-parker’s participation in Hyperpartisan News Detection task (SemEval-2019 Task 4), which requires to classify whether a given news article is bias or not. We decided to use JAVA to do the article parsing tool and the BERT-Based model to do the bias prediction. Furthermore, we will show experiment results with analysis.</abstract>
<identifier type="citekey">ning-etal-2019-team</identifier>
<identifier type="doi">10.18653/v1/S19-2181</identifier>
<location>
<url>https://aclanthology.org/S19-2181</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1037</start>
<end>1040</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Team Peter-Parker at SemEval-2019 Task 4: BERT-Based Method in Hyperpartisan News Detection
%A Ning, Zhiyuan
%A Lin, Yuanzhen
%A Zhong, Ruichao
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F ning-etal-2019-team
%X This paper describes the team peter-parker’s participation in Hyperpartisan News Detection task (SemEval-2019 Task 4), which requires to classify whether a given news article is bias or not. We decided to use JAVA to do the article parsing tool and the BERT-Based model to do the bias prediction. Furthermore, we will show experiment results with analysis.
%R 10.18653/v1/S19-2181
%U https://aclanthology.org/S19-2181
%U https://doi.org/10.18653/v1/S19-2181
%P 1037-1040
Markdown (Informal)
[Team Peter-Parker at SemEval-2019 Task 4: BERT-Based Method in Hyperpartisan News Detection](https://aclanthology.org/S19-2181) (Ning et al., SemEval 2019)
ACL