@inproceedings{saleh-etal-2019-team,
title = "Team {QCRI}-{MIT} at {S}em{E}val-2019 Task 4: Propaganda Analysis Meets Hyperpartisan News Detection",
author = "Saleh, Abdelrhman and
Baly, Ramy and
Barr{\'o}n-Cede{\~n}o, Alberto and
Da San Martino, Giovanni and
Mohtarami, Mitra and
Nakov, Preslav and
Glass, James",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2182/",
doi = "10.18653/v1/S19-2182",
pages = "1041--1046",
abstract = "We describe our submission to SemEval-2019 Task 4 on Hyperpartisan News Detection. We rely on a variety of engineered features originally used to detect propaganda. This is based on the assumption that biased messages are propagandistic and promote a particular political cause or viewpoint. In particular, we trained a logistic regression model with features ranging from simple bag of words to vocabulary richness and text readability. Our system achieved 72.9{\%} accuracy on the manually annotated testset, and 60.8{\%} on the test data that was obtained with distant supervision. Additional experiments showed that significant performance gains can be achieved with better feature pre-processing."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="saleh-etal-2019-team">
<titleInfo>
<title>Team QCRI-MIT at SemEval-2019 Task 4: Propaganda Analysis Meets Hyperpartisan News Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abdelrhman</namePart>
<namePart type="family">Saleh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramy</namePart>
<namePart type="family">Baly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Barrón-Cedeño</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mitra</namePart>
<namePart type="family">Mohtarami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Glass</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe our submission to SemEval-2019 Task 4 on Hyperpartisan News Detection. We rely on a variety of engineered features originally used to detect propaganda. This is based on the assumption that biased messages are propagandistic and promote a particular political cause or viewpoint. In particular, we trained a logistic regression model with features ranging from simple bag of words to vocabulary richness and text readability. Our system achieved 72.9% accuracy on the manually annotated testset, and 60.8% on the test data that was obtained with distant supervision. Additional experiments showed that significant performance gains can be achieved with better feature pre-processing.</abstract>
<identifier type="citekey">saleh-etal-2019-team</identifier>
<identifier type="doi">10.18653/v1/S19-2182</identifier>
<location>
<url>https://aclanthology.org/S19-2182/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1041</start>
<end>1046</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Team QCRI-MIT at SemEval-2019 Task 4: Propaganda Analysis Meets Hyperpartisan News Detection
%A Saleh, Abdelrhman
%A Baly, Ramy
%A Barrón-Cedeño, Alberto
%A Da San Martino, Giovanni
%A Mohtarami, Mitra
%A Nakov, Preslav
%A Glass, James
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F saleh-etal-2019-team
%X We describe our submission to SemEval-2019 Task 4 on Hyperpartisan News Detection. We rely on a variety of engineered features originally used to detect propaganda. This is based on the assumption that biased messages are propagandistic and promote a particular political cause or viewpoint. In particular, we trained a logistic regression model with features ranging from simple bag of words to vocabulary richness and text readability. Our system achieved 72.9% accuracy on the manually annotated testset, and 60.8% on the test data that was obtained with distant supervision. Additional experiments showed that significant performance gains can be achieved with better feature pre-processing.
%R 10.18653/v1/S19-2182
%U https://aclanthology.org/S19-2182/
%U https://doi.org/10.18653/v1/S19-2182
%P 1041-1046
Markdown (Informal)
[Team QCRI-MIT at SemEval-2019 Task 4: Propaganda Analysis Meets Hyperpartisan News Detection](https://aclanthology.org/S19-2182/) (Saleh et al., SemEval 2019)
ACL
- Abdelrhman Saleh, Ramy Baly, Alberto Barrón-Cedeño, Giovanni Da San Martino, Mitra Mohtarami, Preslav Nakov, and James Glass. 2019. Team QCRI-MIT at SemEval-2019 Task 4: Propaganda Analysis Meets Hyperpartisan News Detection. In Proceedings of the 13th International Workshop on Semantic Evaluation, pages 1041–1046, Minneapolis, Minnesota, USA. Association for Computational Linguistics.