@inproceedings{hanawa-etal-2019-sally,
title = "The Sally Smedley Hyperpartisan News Detector at {S}em{E}val-2019 Task 4",
author = "Hanawa, Kazuaki and
Sasaki, Shota and
Ouchi, Hiroki and
Suzuki, Jun and
Inui, Kentaro",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2185/",
doi = "10.18653/v1/S19-2185",
pages = "1057--1061",
abstract = "This paper describes our system submitted to the formal run of SemEval-2019 Task 4: Hyperpartisan news detection. Our system is based on a linear classifier using several features, i.e., 1) embedding features based on the pre-trained BERT embeddings, 2) article length features, and 3) embedding features of informative phrases extracted from by-publisher dataset. Our system achieved 80.9{\%} accuracy on the test set for the formal run and got the 3rd place out of 42 teams."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hanawa-etal-2019-sally">
<titleInfo>
<title>The Sally Smedley Hyperpartisan News Detector at SemEval-2019 Task 4</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kazuaki</namePart>
<namePart type="family">Hanawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shota</namePart>
<namePart type="family">Sasaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroki</namePart>
<namePart type="family">Ouchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Suzuki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system submitted to the formal run of SemEval-2019 Task 4: Hyperpartisan news detection. Our system is based on a linear classifier using several features, i.e., 1) embedding features based on the pre-trained BERT embeddings, 2) article length features, and 3) embedding features of informative phrases extracted from by-publisher dataset. Our system achieved 80.9% accuracy on the test set for the formal run and got the 3rd place out of 42 teams.</abstract>
<identifier type="citekey">hanawa-etal-2019-sally</identifier>
<identifier type="doi">10.18653/v1/S19-2185</identifier>
<location>
<url>https://aclanthology.org/S19-2185/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1057</start>
<end>1061</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Sally Smedley Hyperpartisan News Detector at SemEval-2019 Task 4
%A Hanawa, Kazuaki
%A Sasaki, Shota
%A Ouchi, Hiroki
%A Suzuki, Jun
%A Inui, Kentaro
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F hanawa-etal-2019-sally
%X This paper describes our system submitted to the formal run of SemEval-2019 Task 4: Hyperpartisan news detection. Our system is based on a linear classifier using several features, i.e., 1) embedding features based on the pre-trained BERT embeddings, 2) article length features, and 3) embedding features of informative phrases extracted from by-publisher dataset. Our system achieved 80.9% accuracy on the test set for the formal run and got the 3rd place out of 42 teams.
%R 10.18653/v1/S19-2185
%U https://aclanthology.org/S19-2185/
%U https://doi.org/10.18653/v1/S19-2185
%P 1057-1061
Markdown (Informal)
[The Sally Smedley Hyperpartisan News Detector at SemEval-2019 Task 4](https://aclanthology.org/S19-2185/) (Hanawa et al., SemEval 2019)
ACL