@inproceedings{zhang-etal-2019-ubc,
    title = "{UBC}-{NLP} at {S}em{E}val-2019 Task 4: Hyperpartisan News Detection With Attention-Based {B}i-{LSTM}s",
    author = "Zhang, Chiyu  and
      Rajendran, Arun  and
      Abdul-Mageed, Muhammad",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2188/",
    doi = "10.18653/v1/S19-2188",
    pages = "1072--1077",
    abstract = "We present our deep learning models submitted to the SemEval-2019 Task 4 competition focused at Hyperpartisan News Detection. We acquire best results with a Bi-LSTM network equipped with a self-attention mechanism. Among 33 participating teams, our submitted system ranks top 7 (65.3{\%} accuracy) on the `labels-by-publisher' sub-task and top 24 out of 44 teams (68.3{\%} accuracy) on the `labels-by-article' sub-task (65.3{\%} accuracy). We also report a model that scores higher than the 8th ranking system (78.5{\%} accuracy) on the `labels-by-article' sub-task."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2019-ubc">
    <titleInfo>
        <title>UBC-NLP at SemEval-2019 Task 4: Hyperpartisan News Detection With Attention-Based Bi-LSTMs</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Chiyu</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Arun</namePart>
        <namePart type="family">Rajendran</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Muhammad</namePart>
        <namePart type="family">Abdul-Mageed</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present our deep learning models submitted to the SemEval-2019 Task 4 competition focused at Hyperpartisan News Detection. We acquire best results with a Bi-LSTM network equipped with a self-attention mechanism. Among 33 participating teams, our submitted system ranks top 7 (65.3% accuracy) on the ‘labels-by-publisher’ sub-task and top 24 out of 44 teams (68.3% accuracy) on the ‘labels-by-article’ sub-task (65.3% accuracy). We also report a model that scores higher than the 8th ranking system (78.5% accuracy) on the ‘labels-by-article’ sub-task.</abstract>
    <identifier type="citekey">zhang-etal-2019-ubc</identifier>
    <identifier type="doi">10.18653/v1/S19-2188</identifier>
    <location>
        <url>https://aclanthology.org/S19-2188/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>1072</start>
            <end>1077</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UBC-NLP at SemEval-2019 Task 4: Hyperpartisan News Detection With Attention-Based Bi-LSTMs
%A Zhang, Chiyu
%A Rajendran, Arun
%A Abdul-Mageed, Muhammad
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F zhang-etal-2019-ubc
%X We present our deep learning models submitted to the SemEval-2019 Task 4 competition focused at Hyperpartisan News Detection. We acquire best results with a Bi-LSTM network equipped with a self-attention mechanism. Among 33 participating teams, our submitted system ranks top 7 (65.3% accuracy) on the ‘labels-by-publisher’ sub-task and top 24 out of 44 teams (68.3% accuracy) on the ‘labels-by-article’ sub-task (65.3% accuracy). We also report a model that scores higher than the 8th ranking system (78.5% accuracy) on the ‘labels-by-article’ sub-task.
%R 10.18653/v1/S19-2188
%U https://aclanthology.org/S19-2188/
%U https://doi.org/10.18653/v1/S19-2188
%P 1072-1077
Markdown (Informal)
[UBC-NLP at SemEval-2019 Task 4: Hyperpartisan News Detection With Attention-Based Bi-LSTMs](https://aclanthology.org/S19-2188/) (Zhang et al., SemEval 2019)
ACL