@inproceedings{srivastava-etal-2019-vernon,
    title = "Vernon-fenwick at {S}em{E}val-2019 Task 4: Hyperpartisan News Detection using Lexical and Semantic Features",
    author = "Srivastava, Vertika  and
      Gupta, Ankita  and
      Prakash, Divya  and
      Sahoo, Sudeep Kumar  and
      R.R, Rohit  and
      Kim, Yeon Hyang",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2189/",
    doi = "10.18653/v1/S19-2189",
    pages = "1078--1082",
    abstract = "In this paper, we present our submission for SemEval-2019 Task 4: Hyperpartisan News Detection. Hyperpartisan news articles are sharply polarized and extremely biased (onesided). It shows blind beliefs, opinions and unreasonable adherence to a party, idea, faction or a person. Through this task, we aim to develop an automated system that can be used to detect hyperpartisan news and serve as a prescreening technique for fake news detection. The proposed system jointly uses a rich set of handcrafted textual and semantic features. Our system achieved 2nd rank on the primary metric (82.0{\%} accuracy) and 1st rank on the secondary metric (82.1{\%} F1-score), among all participating teams. Comparison with the best performing system on the leaderboard shows that our system is behind by only 0.2{\%} absolute difference in accuracy."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="srivastava-etal-2019-vernon">
    <titleInfo>
        <title>Vernon-fenwick at SemEval-2019 Task 4: Hyperpartisan News Detection using Lexical and Semantic Features</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Vertika</namePart>
        <namePart type="family">Srivastava</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ankita</namePart>
        <namePart type="family">Gupta</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Divya</namePart>
        <namePart type="family">Prakash</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sudeep</namePart>
        <namePart type="given">Kumar</namePart>
        <namePart type="family">Sahoo</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Rohit</namePart>
        <namePart type="family">R.R</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yeon</namePart>
        <namePart type="given">Hyang</namePart>
        <namePart type="family">Kim</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we present our submission for SemEval-2019 Task 4: Hyperpartisan News Detection. Hyperpartisan news articles are sharply polarized and extremely biased (onesided). It shows blind beliefs, opinions and unreasonable adherence to a party, idea, faction or a person. Through this task, we aim to develop an automated system that can be used to detect hyperpartisan news and serve as a prescreening technique for fake news detection. The proposed system jointly uses a rich set of handcrafted textual and semantic features. Our system achieved 2nd rank on the primary metric (82.0% accuracy) and 1st rank on the secondary metric (82.1% F1-score), among all participating teams. Comparison with the best performing system on the leaderboard shows that our system is behind by only 0.2% absolute difference in accuracy.</abstract>
    <identifier type="citekey">srivastava-etal-2019-vernon</identifier>
    <identifier type="doi">10.18653/v1/S19-2189</identifier>
    <location>
        <url>https://aclanthology.org/S19-2189/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>1078</start>
            <end>1082</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Vernon-fenwick at SemEval-2019 Task 4: Hyperpartisan News Detection using Lexical and Semantic Features
%A Srivastava, Vertika
%A Gupta, Ankita
%A Prakash, Divya
%A Sahoo, Sudeep Kumar
%A R.R, Rohit
%A Kim, Yeon Hyang
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F srivastava-etal-2019-vernon
%X In this paper, we present our submission for SemEval-2019 Task 4: Hyperpartisan News Detection. Hyperpartisan news articles are sharply polarized and extremely biased (onesided). It shows blind beliefs, opinions and unreasonable adherence to a party, idea, faction or a person. Through this task, we aim to develop an automated system that can be used to detect hyperpartisan news and serve as a prescreening technique for fake news detection. The proposed system jointly uses a rich set of handcrafted textual and semantic features. Our system achieved 2nd rank on the primary metric (82.0% accuracy) and 1st rank on the secondary metric (82.1% F1-score), among all participating teams. Comparison with the best performing system on the leaderboard shows that our system is behind by only 0.2% absolute difference in accuracy.
%R 10.18653/v1/S19-2189
%U https://aclanthology.org/S19-2189/
%U https://doi.org/10.18653/v1/S19-2189
%P 1078-1082
Markdown (Informal)
[Vernon-fenwick at SemEval-2019 Task 4: Hyperpartisan News Detection using Lexical and Semantic Features](https://aclanthology.org/S19-2189/) (Srivastava et al., SemEval 2019)
ACL